Department of Data Analysis, Faculty of Psychological and Educational Sciences, Ghent University, 1 Henri Dunantlaan, B-9000, Ghent, Belgium.
Data Science Institute, Imperial College London, London, UK.
Behav Res Methods. 2024 Oct;56(7):8057-8079. doi: 10.3758/s13428-024-02471-8. Epub 2024 Jul 30.
Psychological network approaches propose to see symptoms or questionnaire items as interconnected nodes, with links between them reflecting pairwise statistical dependencies evaluated on cross-sectional, time-series, or panel data. These networks constitute an established methodology to visualise and conceptualise the interactions and relative importance of nodes/indicators, providing an important complement to other approaches such as factor analysis. However, limiting the representation to pairwise relationships can neglect potentially critical information shared by groups of three or more variables (higher-order statistical interdependencies). To overcome this important limitation, here we propose an information-theoretic framework to assess these interdependencies and consequently to use hypergraphs as representations in psychometrics. As edges in hypergraphs are capable of encompassing several nodes together, this extension can thus provide a richer account on the interactions that may exist among sets of psychological variables. Our results show how psychometric hypergraphs can highlight meaningful redundant and synergistic interactions on either simulated or state-of-the-art, re-analysed psychometric datasets. Overall, our framework extends current network approaches while leading to new ways of assessing the data that differ at their core from other methods, enriching the psychometrics toolbox, and opening promising avenues for future investigation.
心理网络方法提出将症状或问卷项目视为相互关联的节点,节点之间的联系反映了在横截面、时间序列或面板数据上评估的成对统计依赖性。这些网络构成了可视化和概念化节点/指标相互作用和相对重要性的既定方法,为因子分析等其他方法提供了重要补充。然而,将表示限制为成对关系可能会忽略由三个或更多变量(高阶统计相关性)共享的潜在关键信息。为了克服这一重要限制,我们在这里提出了一个信息论框架来评估这些相关性,并因此在心理计量学中使用超图作为表示。由于超图中的边能够一起包含多个节点,因此这种扩展可以更丰富地说明可能存在于心理变量集合之间的相互作用。我们的结果表明,心理计量超图如何突出模拟或最先进的心理计量数据集上有意义的冗余和协同相互作用。总的来说,我们的框架扩展了当前的网络方法,同时导致了从核心上不同于其他方法的新的数据评估方法,丰富了心理计量工具箱,并为未来的研究开辟了有前途的途径。