Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Lokman Hekim University, Ankara, Turkey.
Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
Eur Arch Otorhinolaryngol. 2024 Dec;281(12):6585-6597. doi: 10.1007/s00405-024-08862-z. Epub 2024 Jul 31.
Radiomics, a recently developed image-processing technology, holds potential in medical diagnostics. This study aimed to propose a machine-learning (ML) model and evaluate its effectiveness in detecting oral squamous cell carcinoma (OSCC) and predicting bone metastasis using magnetic resonance imaging (MRI).
MATERIALS-METHODS: MRI radiomic features were extracted and analyzed to identify malignant lesions. A total of 86 patients (44 with benign lesions without bone invasion and 42 with malignant lesions with bone invasion) were included. Data and clinical information were managed using the RadCloud Platform (Huiying Medical Technology Co., Ltd., Beijing, China). The study employed a hand-crafted radiomics model, with the dataset randomly split into training and validation sets in an 8:2 ratio using 815 random seeds.
The results revealed that the ML method support vector machine (SVM) performed best for detecting bone invasion (AUC = 0.999) in the test set. Radiomics tumor features derived from MRI are useful to predicting bone invasion from oral squamous cell carcinoma with high accuracy.
This study introduces an ML model utilizing SVM and radiomics to predict bone invasion in OSCC. Despite the promising results, the small sample size necessitates larger multicenter studies to validate and expand these findings.
放射组学是一种新兴的图像处理技术,在医学诊断中具有很大的潜力。本研究旨在提出一种机器学习(ML)模型,并评估其利用磁共振成像(MRI)检测口腔鳞状细胞癌(OSCC)和预测骨转移的有效性。
提取和分析 MRI 放射组学特征以识别恶性病变。共纳入 86 例患者(44 例为无骨侵犯的良性病变,42 例为有骨侵犯的恶性病变)。数据和临床信息使用 RadCloud 平台(北京慧影医疗科技有限公司)进行管理。该研究采用手工制作的放射组学模型,使用 815 个随机种子将数据集随机分为 8:2 的训练集和验证集。
结果表明,在测试集中,ML 方法支持向量机(SVM)在检测骨侵犯方面表现最佳(AUC=0.999)。MRI 中提取的肿瘤放射组学特征对于准确预测口腔鳞状细胞癌的骨侵犯具有重要意义。
本研究提出了一种利用 SVM 和放射组学的 ML 模型来预测 OSCC 中的骨侵犯。尽管结果很有希望,但由于样本量小,需要更大规模的多中心研究来验证和扩展这些发现。