Suppr超能文献

过去二十年来,脑白质高信号分割方法的演变及实现;向深度学习的不完全转变。

Evolution of white matter hyperintensity segmentation methods and implementation over the past two decades; an incomplete shift towards deep learning.

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.

Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Brain Imaging Behav. 2024 Oct;18(5):1310-1322. doi: 10.1007/s11682-024-00902-w. Epub 2024 Jul 31.

Abstract

This systematic review examines the prevalence, underlying mechanisms, cohort characteristics, evaluation criteria, and cohort types in white matter hyperintensity (WMH) pipeline and implementation literature spanning the last two decades. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we categorized WMH segmentation tools based on their methodologies from January 1, 2000, to November 18, 2022. Inclusion criteria involved articles using openly available techniques with detailed descriptions, focusing on WMH as a primary outcome. Our analysis identified 1007 visual rating scales, 118 pipeline development articles, and 509 implementation articles. These studies predominantly explored aging, dementia, psychiatric disorders, and small vessel disease, with aging and dementia being the most prevalent cohorts. Deep learning emerged as the most frequently developed segmentation technique, indicative of a heightened scrutiny in new technique development over the past two decades. We illustrate observed patterns and discrepancies between published and implemented WMH techniques. Despite increasingly sophisticated quantitative segmentation options, visual rating scales persist, with the SPM technique being the most utilized among quantitative methods and potentially serving as a reference standard for newer techniques. Our findings highlight the need for future standards in WMH segmentation, and we provide recommendations based on these observations.

摘要

这篇系统综述回顾了过去二十年中,有关脑白质高信号(WMH)管道和实施文献的患病率、潜在机制、队列特征、评估标准和队列类型。我们遵循系统评价和荟萃分析的首选报告项目(PRISMA)指南,根据其方法学将 WMH 分割工具分为 2000 年 1 月 1 日至 2022 年 11 月 18 日。纳入标准涉及使用公开技术且有详细描述的文章,主要关注 WMH 作为主要结果。我们的分析确定了 1007 种视觉评分量表、118 篇管道开发文章和 509 篇实施文章。这些研究主要探讨了衰老、痴呆、精神障碍和小血管疾病,其中衰老和痴呆是最常见的队列。深度学习是最常开发的分割技术,这表明在过去二十年中,新技术的发展受到了更严格的审查。我们展示了发表和实施的 WMH 技术之间的观察到的模式和差异。尽管出现了越来越复杂的定量分割选项,但视觉评分量表仍然存在,SPM 技术是定量方法中最常用的方法,并且可能成为新技术的参考标准。我们的研究结果强调了未来 WMH 分割标准的必要性,并根据这些观察结果提出了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b36/11582091/4ad8b83c82d6/11682_2024_902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验