Suppr超能文献

血清挥发性有机化合物在食管癌诊断中的应用。

Serum-volatile organic compounds in the diagnostics of esophageal cancer.

机构信息

Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.

Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.

出版信息

Sci Rep. 2024 Jul 31;14(1):17722. doi: 10.1038/s41598-024-67818-9.

Abstract

The early diagnosis of esophageal cancer (EC) is extremely challenging due to a lack of effective diagnostic methods. The study presented herein aims to assess whether serum volatile organic compounds (VOCs) could be utilised as emerging diagnostic biomarkers for EC. Gas chromatography-ion mobility spectrometry (GC-IMS) was used to detect VOCs in the serum samples of 55 patients with EC, with samples from 84 healthy controls (HCs) patients analysed as a comparison. All machine learning analyses were based on data from serum VOCs obtained by GC-IMS. A total of 33 substance peak heights were detected in all patient serum samples. The ROC analysis revealed that four machine learning models were effective in facilitating the diagnosis of EC. In addition, the random forests model for 5 VOCs had an AUC of 0.951, with sensitivities and specificities of 94.1 and 96.0%, respectively.

摘要

由于缺乏有效的诊断方法,食管癌(EC)的早期诊断极具挑战性。本研究旨在评估血清挥发性有机化合物(VOCs)是否可用作 EC 的新兴诊断生物标志物。应用气相色谱-离子迁移谱(GC-IMS)检测 55 例 EC 患者和 84 例健康对照(HC)患者血清样本中的 VOCs。所有机器学习分析均基于 GC-IMS 获得的血清 VOCs 数据。在所有患者血清样本中共检测到 33 个物质峰高。ROC 分析显示,4 种机器学习模型可有效辅助 EC 诊断。此外,基于 5 个 VOCs 的随机森林模型 AUC 为 0.951,灵敏度和特异性分别为 94.1%和 96.0%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ee0/11291479/78b8cf331acf/41598_2024_67818_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验