Suppr超能文献

Stargardt 病中自发荧光病变的自动分割。

Automated Segmentation of Autofluorescence Lesions in Stargardt Disease.

机构信息

Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan.

Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan.

出版信息

Ophthalmol Retina. 2022 Nov;6(11):1098-1104. doi: 10.1016/j.oret.2022.05.020. Epub 2022 May 27.

Abstract

OBJECTIVE

To train a deep learning (DL) algorithm to perform fully automated semantic segmentation of multiple autofluorescence lesion types in Stargardt disease.

DESIGN

Cross-sectional study with retrospective imaging data.

SUBJECTS

The study included 193 images from 193 eyes of 97 patients with Stargardt disease.

METHODS

Fundus autofluorescence images obtained from patient visits between 2013 and 2020 were annotated with ground-truth labels. Model training and evaluation were performed using fivefold cross-validation.

MAIN OUTCOMES MEASURES

Dice similarity coefficients, intraclass correlation coefficients, and Bland-Altman analyses comparing algorithm-predicted and grader-labeled segmentations.

RESULTS

The overall Dice similarity coefficient across all lesion classes was 0.78 (95% confidence interval [CI], 0.69-0.86). Dice coefficients were 0.90 (95% CI, 0.85-0.94) for areas of definitely decreased autofluorescence (DDAF), 0.55 (95% CI, 0.35-0.76) for areas of questionably decreased autofluorescence (QDAF), and 0.88 (95% CI, 0.73-1.00) for areas of abnormal background autofluorescence (ABAF). Intraclass correlation coefficients comparing the ground-truth and automated methods were 0.997 (95% CI, 0.996-0.998) for DDAF, 0.863 (95% CI, 0.823-0.895) for QDAF, and 0.974 (95% CI, 0.966-0.980) for ABAF.

CONCLUSIONS

A DL algorithm performed accurate segmentation of autofluorescence lesions in Stargardt disease, demonstrating the feasibility of fully automated segmentation as an alternative to manual or semiautomated labeling methods.

摘要

目的

训练深度学习(DL)算法对斯塔加特病的多种自发荧光病变类型进行全自动语义分割。

设计

具有回顾性成像数据的横断面研究。

受试者

该研究纳入了 193 名斯塔加特病患者的 193 只眼的 193 张图像。

方法

使用地面真实标签对 2013 年至 2020 年间就诊时获得的眼底自发荧光图像进行注释。使用五重交叉验证进行模型训练和评估。

主要观察指标

比较算法预测和分级器标记分割的骰子相似系数、组内相关系数和 Bland-Altman 分析。

结果

所有病变类别总体的骰子相似系数为 0.78(95%置信区间[CI],0.69-0.86)。明确的自发荧光减少区(DDAF)的骰子系数为 0.90(95%CI,0.85-0.94),可疑的自发荧光减少区(QDAF)为 0.55(95%CI,0.35-0.76),异常背景自发荧光区(ABAF)为 0.88(95%CI,0.73-1.00)。与地面真实和自动方法相比,DDAF 的组内相关系数为 0.997(95%CI,0.996-0.998),QDAF 为 0.863(95%CI,0.823-0.895),ABAF 为 0.974(95%CI,0.966-0.980)。

结论

DL 算法对斯塔加特病的自发荧光病变进行了准确的分割,证明了全自动分割作为手动或半自动标记方法的替代方法的可行性。

相似文献

1
Automated Segmentation of Autofluorescence Lesions in Stargardt Disease.Stargardt 病中自发荧光病变的自动分割。
Ophthalmol Retina. 2022 Nov;6(11):1098-1104. doi: 10.1016/j.oret.2022.05.020. Epub 2022 May 27.

本文引用的文献

2
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验