Suppr超能文献

从面部表情到算法:动物疼痛识别技术的叙述性综述

From facial expressions to algorithms: a narrative review of animal pain recognition technologies.

作者信息

Chiavaccini Ludovica, Gupta Anjali, Chiavaccini Guido

机构信息

Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.

Independent Researcher, Livorno, Italy.

出版信息

Front Vet Sci. 2024 Jul 17;11:1436795. doi: 10.3389/fvets.2024.1436795. eCollection 2024.

Abstract

Facial expressions are essential for communication and emotional expression across species. Despite the improvements brought by tools like the Horse Grimace Scale (HGS) in pain recognition in horses, their reliance on human identification of characteristic traits presents drawbacks such as subjectivity, training requirements, costs, and potential bias. Despite these challenges, the development of facial expression pain scales for animals has been making strides. To address these limitations, Automated Pain Recognition (APR) powered by Artificial Intelligence (AI) offers a promising advancement. Notably, computer vision and machine learning have revolutionized our approach to identifying and addressing pain in non-verbal patients, including animals, with profound implications for both veterinary medicine and animal welfare. By leveraging the capabilities of AI algorithms, we can construct sophisticated models capable of analyzing diverse data inputs, encompassing not only facial expressions but also body language, vocalizations, and physiological signals, to provide precise and objective evaluations of an animal's pain levels. While the advancement of APR holds great promise for improving animal welfare by enabling better pain management, it also brings forth the need to overcome data limitations, ensure ethical practices, and develop robust ground truth measures. This narrative review aimed to provide a comprehensive overview, tracing the journey from the initial application of facial expression recognition for the development of pain scales in animals to the recent application, evolution, and limitations of APR, thereby contributing to understanding this rapidly evolving field.

摘要

面部表情对于跨物种的交流和情感表达至关重要。尽管像马面部表情疼痛量表(HGS)这样的工具在马匹疼痛识别方面带来了改进,但它们依赖人类对特征的识别存在主观性、培训要求、成本和潜在偏差等缺点。尽管存在这些挑战,但动物面部表情疼痛量表的开发一直在取得进展。为了解决这些局限性,由人工智能(AI)驱动的自动疼痛识别(APR)提供了一个有前景的进展。值得注意的是,计算机视觉和机器学习彻底改变了我们识别和解决包括动物在内的非语言患者疼痛的方法,对兽医学和动物福利都产生了深远影响。通过利用AI算法的能力,我们可以构建复杂的模型,能够分析各种数据输入,不仅包括面部表情,还包括肢体语言、发声和生理信号,以提供对动物疼痛程度的精确和客观评估。虽然APR的进展有望通过实现更好的疼痛管理来改善动物福利,但它也带来了克服数据限制、确保道德实践和开发可靠的地面真相测量方法的需求。这篇叙述性综述旨在提供全面概述,追溯从面部表情识别最初应用于动物疼痛量表开发到APR的最新应用、演变和局限性的历程,从而有助于理解这个快速发展的领域。

相似文献

7
Using AI to Detect Pain through Facial Expressions: A Review.利用人工智能通过面部表情检测疼痛:综述
Bioengineering (Basel). 2023 May 2;10(5):548. doi: 10.3390/bioengineering10050548.
8
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.解开伦理谜团:医疗保健领域的人工智能
Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262. eCollection 2023 Aug.
9
Explainable automated pain recognition in cats.猫的可解释自动化疼痛识别。
Sci Rep. 2023 Jun 2;13(1):8973. doi: 10.1038/s41598-023-35846-6.

本文引用的文献

3
Reproducible and fully automated testing of nocifensive behavior in mice.在小鼠中进行可重现且全自动的伤害性行为测试。
Cell Rep Methods. 2023 Dec 18;3(12):100650. doi: 10.1016/j.crmeth.2023.100650. Epub 2023 Nov 21.
7
Explainable automated pain recognition in cats.猫的可解释自动化疼痛识别。
Sci Rep. 2023 Jun 2;13(1):8973. doi: 10.1038/s41598-023-35846-6.
9
Automatic assessment of pain based on deep learning methods: A systematic review.基于深度学习方法的疼痛自动评估:一项系统综述。
Comput Methods Programs Biomed. 2023 Apr;231:107365. doi: 10.1016/j.cmpb.2023.107365. Epub 2023 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验