Ferreira Pedro, Benabderrahim Mohamed Ali, Hamza Hammadi, Marchesini Alexis, Rejili Mokhtar, Castro Joana, Tavares Rui M, Costa Daniela, Sebastiani Federico, Lino-Neto Teresa
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
Faculty of Sciences of Tunis, Department of Biology, University of Tunis EL Manar, 2092, Tunis, Tunisia.
Microb Ecol. 2024 Aug 1;87(1):103. doi: 10.1007/s00248-024-02415-x.
Plants thrive in diverse environments, where root-microbe interactions play a pivotal role. Date palm (Phoenix dactylifera L.), with its genetic diversity and resilience, is an ideal model for studying microbial adaptation to different genotypes and stresses. This study aimed to analyze the bacterial and fungal communities associated with traditional date palm cultivars and the widely cultivated "Deglet Nour" were explored using metabarcoding approaches. The microbial diversity analysis identified a rich community with 13,189 bacterial and 6442 fungal Amplicon Sequence Variants (ASVs). Actinobacteriota, Proteobacteria, and Bacteroidota dominated bacterial communities, while Ascomycota dominated fungal communities. Analysis of the microbial community revealed the emergence of two distinct clusters correlating with specific date palm cultivars, but fungal communities showed higher sensitivity to date palm genotype variations compared to bacterial communities. The commercial cultivar "Deglet Nour" exhibited a unique microbial composition enriched in pathogenic fungal taxa, which was correlated with its genetic distance. Overall, our study contributes to understanding the complex interactions between date palm genotypes and soil microbiota, highlighting the genotype role in microbial community structure, particularly among fungi. These findings suggest correlations between date palm genotype, stress tolerance, and microbial assembly, with implications for plant health and resilience. Further research is needed to elucidate genotype-specific microbial interactions and their role in enhancing plant resilience to environmental stresses.
植物在多样的环境中茁壮成长,其中根际微生物相互作用起着关键作用。海枣(Phoenix dactylifera L.)具有遗传多样性和适应能力,是研究微生物对不同基因型和胁迫适应情况的理想模型。本研究旨在分析与传统海枣品种相关的细菌和真菌群落,并采用宏条形码技术对广泛种植的“Deglet Nour”品种进行了探索。微生物多样性分析确定了一个丰富的群落,其中有13189个细菌扩增子序列变体(ASV)和6442个真菌ASV。放线菌门、变形菌门和拟杆菌门在细菌群落中占主导地位,而子囊菌门在真菌群落中占主导地位。微生物群落分析揭示了与特定海枣品种相关的两个不同聚类的出现,但与细菌群落相比,真菌群落对海枣基因型变异表现出更高的敏感性。商业品种“Deglet Nour”表现出独特的微生物组成,富含致病真菌类群,这与其遗传距离相关。总体而言,我们的研究有助于理解海枣基因型与土壤微生物群之间的复杂相互作用,突出了基因型在微生物群落结构中的作用,尤其是在真菌中。这些发现表明海枣基因型、胁迫耐受性和微生物组装之间存在相关性,对植物健康和适应能力具有重要意义。需要进一步研究来阐明基因型特异性微生物相互作用及其在增强植物对环境胁迫适应能力中的作用。