Kumar Himansu, Chen Zikang, Adegunlehin Abayomi, Trowbridge Loren, Aguilar Leonardo, Kim Pora
Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Houston, TX 77030, United States.
Department of Computer Science, Rice University, 6100 Main St, Houston, TX 77005, United States.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf259.
Kinase fusion genes were the most targeted fusion gene group among multiple major cellular gene groups. Kinase inhibitors disrupt aberrant signaling cascades and inhibit tumor progression, yet the specific mechanisms of action of the U.S. Food and Drug Administration (FDA)-approved inhibitors in the context of kinase fusion oncoproteins remain largely unknown. This gap limits our ability to develop personalized therapies and next-generation kinase inhibitors. To address this, we developed a novel in silico pipeline for predicting 3D structures of kinase fusion proteins and performing structure-based virtual screening. This approach enables large-scale structural annotation and drug screening across pan-cancer kinase fusions. We present KinaseFusionDB, available at https://compbio.uth.edu/KinaseFusionDB, a comprehensive knowledgebase providing functional annotation of 7680 kinase fusion genes, 1399 predicted fusion protein structures, predicted Local Distance Difference Test (pLDDT)-based confidence scoring, and virtual screening data using FDA-approved kinase inhibitors. Our analysis revealed that most predicted structures showed high pLDDT scores (pLDDT >70) within conserved kinase domains. Structural alignment with known Protein Data Banks demonstrated shared structural motifs despite variation in fusion breakpoints. Virtual screening results highlighted repurposing opportunities and isoform-specific binding preferences. KinaseFusionDB is a valuable resource for investigating kinase fusion structure-function relationships and guiding the design of personalized and next-generation kinase inhibitor therapies.
激酶融合基因是多个主要细胞基因组中最常被靶向的融合基因组。激酶抑制剂可破坏异常信号级联反应并抑制肿瘤进展,然而,美国食品药品监督管理局(FDA)批准的抑制剂在激酶融合癌蛋白背景下的具体作用机制在很大程度上仍不清楚。这一差距限制了我们开发个性化疗法和下一代激酶抑制剂的能力。为了解决这一问题,我们开发了一种新颖的计算机模拟流程,用于预测激酶融合蛋白的三维结构并进行基于结构的虚拟筛选。这种方法能够对泛癌激酶融合进行大规模的结构注释和药物筛选。我们展示了KinaseFusionDB,可在https://compbio.uth.edu/KinaseFusionDB获取,这是一个全面的知识库,提供7680个激酶融合基因的功能注释、1399个预测的融合蛋白结构、基于预测局部距离差异测试(pLDDT)的置信度评分,以及使用FDA批准的激酶抑制剂的虚拟筛选数据。我们的分析表明,大多数预测结构在保守激酶结构域内显示出高pLDDT分数(pLDDT>70)。与已知蛋白质数据库的结构比对表明,尽管融合断点存在差异,但仍有共享的结构基序。虚拟筛选结果突出了重新利用的机会和异构体特异性结合偏好。KinaseFusionDB是研究激酶融合结构-功能关系以及指导个性化和下一代激酶抑制剂疗法设计的宝贵资源。