Gonçalves Márcia Soares, Tavares Iasnaia Maria de Carvalho, Sampaio Igor Carvalho Fontes, Dos Santos Marta Maria Oliveira, Ambrósio Helen Luiza Brandão Silva, Araújo Sabryna Couto, Veloso Cristiane Martins, Neta Jaci Lima Vilanova, Mendes Adriano Aguiar, Dos Anjos Paulo Neilson Marques, Ruiz Héctor A, Franco Marcelo
Department of Exact and Natural Sciences, State University of Southwest, Itapetinga, 45700-000 Brazil.
Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences (DCEX), State University of Santa Cruz (UESC), Ilhéus, Bahia 45662-900 Brazil.
3 Biotech. 2024 Aug;14(8):189. doi: 10.1007/s13205-024-04029-z. Epub 2024 Jul 30.
This study presents a novel approach to producing activated carbon from agro-industrial residues, specifically cocoa fruit peel, using solid-state fermentation (SSF) with . The process effectively degrades lignin, a major impediment in traditional activated carbon production, resulting in a high-quality carbon material. This carbon was successfully utilized for enzyme immobilization and aroma synthesis, showcasing its potential as a versatile biocatalyst. The study meticulously evaluated the physical and chemical attributes of activated carbon derived from fermented cocoa peel, alongside the immobilized enzymes. Employing a suite of analytical techniques-electrophoresis, FTIR, XRD, and TG/DTG the research revealed that fermentation yields a porous material with an expansive surface area of 1107.87 m/g. This material proves to be an excellent medium for lipase immobilization. The biocatalyst fashioned from the fermented biomass exhibited a notable increase in protein content (13% w/w), hydrolytic activity (15% w/w), and specific activity (29% w/w), underscoring the efficacy of the fermentation process. The significant outcome of this research is the development of a sustainable method for activated carbon production that not only overcomes the limitations posed by lignin but also enhances enzyme immobilization for industrial applications. The study's findings have important implications for the agro-industrial sector, promoting a circular economy and advancing sustainable biotechnological processes.
本研究提出了一种利用固态发酵从农业工业残渣,特别是可可果皮中生产活性炭的新方法。该过程有效降解了木质素,这是传统活性炭生产中的主要障碍,从而得到了高质量的碳材料。这种碳成功用于酶固定化和香气合成,展示了其作为多功能生物催化剂的潜力。该研究精心评估了发酵可可果皮衍生的活性炭以及固定化酶的物理和化学属性。通过一系列分析技术——电泳、傅里叶变换红外光谱、X射线衍射和热重/微商热重分析,研究表明发酵产生了一种多孔材料,其表面积达1107.87平方米/克。这种材料被证明是固定化脂肪酶的优良介质。由发酵生物质制成的生物催化剂在蛋白质含量(13% w/w)、水解活性(15% w/w)和比活性(29% w/w)方面显著增加,突出了发酵过程的功效。本研究的重要成果是开发了一种可持续的活性炭生产方法,该方法不仅克服了木质素带来的限制,还增强了用于工业应用的酶固定化。该研究结果对农业工业部门具有重要意义,推动了循环经济并促进了可持续生物技术过程。