Suppr超能文献

使用惯性测量单元和足底压力分布数据早期检测行走中的步态冻结。

Early Detection of Freezing of Gait during Walking Using Inertial Measurement Unit and Plantar Pressure Distribution Data.

机构信息

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

出版信息

Sensors (Basel). 2021 Mar 23;21(6):2246. doi: 10.3390/s21062246.

Abstract

Freezing of gait (FOG) is a sudden and highly disruptive gait dysfunction that appears in mid to late-stage Parkinson's disease (PD) and can lead to falling and injury. A system that predicts freezing before it occurs or detects freezing immediately after onset would generate an opportunity for FOG prevention or mitigation and thus enhance safe mobility and quality of life. This research used accelerometer, gyroscope, and plantar pressure sensors to extract 861 features from walking data collected from 11 people with FOG. Minimum-redundancy maximum-relevance and Relief-F feature selection were performed prior to training boosted ensembles of decision trees. The binary classification models identified Total-FOG or No FOG states, wherein the Total-FOG class included data windows from 2 s before the FOG onset until the end of the FOG episode. Three feature sets were compared: plantar pressure, inertial measurement unit (IMU), and both plantar pressure and IMU features. The plantar-pressure-only model had the greatest sensitivity and the IMU-only model had the greatest specificity. The best overall model used the combination of plantar pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG windows, Freeze windows, transition windows between Pre-FOG and Freeze). The best model detected windows that contained both Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began. Windows of FOG data were detected with 93.4% sensitivity. The IMU and plantar pressure feature-based model slightly outperformed models that used data from a single sensor type. The model achieved early detection by identifying the transition from Pre-FOG to FOG while maintaining excellent FOG detection performance (93.4% sensitivity). Therefore, if used as part of an intelligent, real-time FOG identification and cueing system, even if the Pre-FOG state were missed, the model would perform well as a freeze detection and cueing system that could improve the mobility and independence of people with PD during their daily activities.

摘要

冻结步态(FOG)是一种突然发生的、高度破坏的步态功能障碍,出现在帕金森病(PD)的中晚期,可导致跌倒和受伤。一个能够在 FOG 发生之前预测或在 FOG 发作后立即检测到 FOG 的系统,将为预防或缓解 FOG 提供机会,从而提高移动安全性和生活质量。本研究使用加速度计、陀螺仪和足底压力传感器,从 11 名患有 FOG 的人的步行数据中提取 861 个特征。在训练增强决策树集成之前,进行了最小冗余最大相关性和 Relief-F 特征选择。二进制分类模型识别出总 FOG 或无 FOG 状态,其中总 FOG 类包括从 FOG 发作前 2 秒到 FOG 发作结束的数据窗口。比较了三个特征集:足底压力、惯性测量单元(IMU)和足底压力和 IMU 特征的组合。仅使用足底压力的模型具有最高的敏感性,而仅使用 IMU 的模型具有最高的特异性。最佳整体模型使用了足底压力和 IMU 特征的组合,实现了 76.4%的敏感性和 86.2%的特异性。接下来,单独评估了总 FOG 类别的组成部分(即 Pre-FOG 窗口、冻结窗口、Pre-FOG 和冻结之间的过渡窗口)。最佳模型检测到包含 Pre-FOG 和 FOG 数据的窗口,敏感性为 85.2%,这相当于在冻结开始后不到 1 秒就检测到 FOG。FOG 数据窗口的检测敏感性为 93.4%。基于 IMU 和足底压力特征的模型略优于使用单一传感器类型数据的模型。该模型通过识别从 Pre-FOG 到 FOG 的过渡,实现了早期检测,同时保持了出色的 FOG 检测性能(93.4%的敏感性)。因此,如果将其用作智能、实时 FOG 识别和提示系统的一部分,即使错过了 Pre-FOG 状态,该模型也将作为冻结检测和提示系统表现良好,从而提高 PD 患者在日常活动中的移动性和独立性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9ff/8004667/6a8598a5acf2/sensors-21-02246-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验