Suppr超能文献

使用最小冗余最大相关性选择用于帕金森病步态冻结检测的足底压力和踝关节加速度特征。

Selection of Plantar-Pressure and Ankle-Acceleration Features for Freezing of Gait Detection in Parkinson's Disease using Minimum-Redundancy Maximum-Relevance.

作者信息

Pardoel Scott, Shalin Gaurav, Nantel Julie, Lemaire Edward D, Kofman Jonathan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4034-4037. doi: 10.1109/EMBC44109.2020.9176607.

Abstract

Freezing of gait (FOG) is a major hindrance to daily mobility and can lead to falling in people with Parkinson's disease. While wearable accelerometers and gyroscopes have been commonly used for FOG detection, foot plantar pressure distribution could also be considered for this application, given its usefulness in previous gait-based classification. This research examined 325 plantar-pressure based features and 132 acceleration-based features extracted from the walking data of five males with Parkinson's disease who experienced FOG. A set of 61 features calculated from the time domain, Fast Fourier transform (FFT), and wavelet transform (WT) were extracted from multiple input signals; including, total ground reaction force, foot centre of pressure (COP) position, COP velocity, COP acceleration, and 3D ankle acceleration. Minimum-redundancy maximum relevance (mRMR) feature selection was used to rank all features. Plantar-pressure based features accounted for 4 of the top 5 features (ranks 2, 3, 4, 5); the remaining feature was an ankle acceleration based feature (rank 1). The three highest ranked features were the freeze index (calculated from ankle acceleration), total power in the frequency domain (calculated using the FFT from COP velocity), and mean of the WT detail coefficients (calculated from COP velocity). This preliminary analysis demonstrated that features calculated from plantar pressure, specifically COP velocity, performed comparably to ankle acceleration features. Thus, feature sets for FOG detection may benefit from plantar-pressure based features.

摘要

冻结步态(FOG)是日常活动能力的主要障碍,可导致帕金森病患者跌倒。虽然可穿戴加速度计和陀螺仪已普遍用于FOG检测,但鉴于足底压力分布在先前基于步态的分类中的有用性,也可考虑将其用于此应用。本研究检查了从五名患有FOG的帕金森病男性的步行数据中提取的325个基于足底压力的特征和132个基于加速度的特征。从多个输入信号中提取了一组从时域、快速傅里叶变换(FFT)和小波变换(WT)计算得到的61个特征;包括总地面反作用力、足底压力中心(COP)位置、COP速度、COP加速度和三维踝关节加速度。使用最小冗余最大相关性(mRMR)特征选择对所有特征进行排名。基于足底压力的特征在前5个特征中占4个(排名第2、3、4、5);其余特征是基于踝关节加速度的特征(排名第1)。排名最高的三个特征是冻结指数(根据踝关节加速度计算)、频域总功率(使用COP速度的FFT计算)和WT细节系数的平均值(根据COP速度计算)。这一初步分析表明,从足底压力计算得到的特征,特别是COP速度,与踝关节加速度特征表现相当。因此,用于FOG检测的特征集可能受益于基于足底压力的特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验