Suppr超能文献

探索影响符合国家现场分诊指南标准的受伤患者分诊不足的患者和系统因素。

Exploring patient and system factors impacting undertriage of injured patients meeting national field triage guideline criteria.

作者信息

Beiriger Jamison, Puyana Jacob, Deeb Andrew-Paul, Silver David, Lu Liling, Boland Sebastian, Brown Joshua B

机构信息

From the Division of Trauma and General Surgery, Department of Surgery (J.B., J.P., D.S., L.L., S.B., J.B.B.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and Department of Surgery (A.-P.D.), Advent Health, Orlando, Florida.

出版信息

J Trauma Acute Care Surg. 2025 Apr 1;98(4):605-613. doi: 10.1097/TA.0000000000004407. Epub 2024 Aug 2.

Abstract

BACKGROUND

Trauma systems save lives by coordinating timely and effective responses to injury. However, trauma system effectiveness varies geographically, with worse outcomes observed in rural settings. Prior data suggest that undertriage may play a role in this disparity. Our aim was to explore potential driving factors for decision making among clinicians for undertriaged trauma patients.

METHODS

We performed a retrospective analysis of the National Emergency Medical Services Information System database among patients who met physiologic or anatomic national field triage guideline criteria for transport to the highest level of trauma center. Undertriage was defined as transport to a non-level I/II trauma center. Multivariable logistic regression was used to determine demographic, injury, and system characteristics associated with undertriage. Undertriaged patients were then categorized into "recognized" and "unrecognized" groups using the documented reason for transport destination to identify underlying factors associated with undertriage.

RESULTS

A total of 36,094 patients were analyzed. Patients in urban areas were more likely to be transported to a destination based on protocol rather than the closest available facility. As expected, patients injured in urban regions were less likely to be undertriaged than their suburban (adjusted odds ratio [aOR], 2.69; 95% confidence interval [95% CI], 2.21-3.31), rural (aOR, 2.71; 95% CI, 2.28-3.21), and wilderness counterparts (aOR, 3.99; 95% CI, 2.93-5.45). The strongest predictor of undertriage was patient/family choice (aOR, 6.29; 5.28-7.50), followed by closest facility (aOR, 5.49; 95% CI, 4.91-6.13) as the reason for hospital selection. Nonurban settings had over twice the odds of recognizing the presence of triage criteria among undertriaged patients ( p < 0.05).

CONCLUSION

Patients with injuries in nonurban settings and those with less apparent causes of severe injury are more likely to experience undertriage. By analyzing how prehospital clinicians choose transport destinations, we identified patient and system factors associated with undertriage. Targeting these at-risk demographics and contributing factors may help alleviate regional disparities in undertriage.

LEVEL OF EVIDENCE

Prognostic and Epidemiological; Level III.

摘要

背景

创伤系统通过协调对损伤的及时有效反应来挽救生命。然而,创伤系统的有效性在地理上存在差异,农村地区的治疗效果较差。先前的数据表明,分诊不足可能在这种差异中起作用。我们的目的是探讨临床医生对分诊不足的创伤患者进行决策的潜在驱动因素。

方法

我们对国家紧急医疗服务信息系统数据库进行了回顾性分析,纳入了符合生理或解剖学国家现场分诊指南标准、应被转运至最高级创伤中心的患者。分诊不足定义为被转运至非一级/二级创伤中心。采用多变量逻辑回归分析来确定与分诊不足相关的人口统计学、损伤和系统特征。然后,根据记录的转运目的地原因,将分诊不足的患者分为“已识别”和“未识别”两组,以确定与分诊不足相关的潜在因素。

结果

共分析了36094例患者。城市地区的患者更有可能根据协议而非最近的可用医疗机构被转运至目的地。正如预期的那样,城市地区受伤的患者比分诊不足的郊区患者(调整后的优势比[aOR]为2.69;95%置信区间[95%CI]为2.21 - 3.31)、农村患者(aOR为2.71;95%CI为2.28 - 3.21)和野外受伤患者(aOR为3.99;95%CI为2.93 - 5.45)更不容易出现分诊不足。分诊不足的最强预测因素是患者/家属的选择(aOR为6.29;5.28 - 7.50),其次是选择医院的原因是最近的医疗机构(aOR为5.49;95%CI为4.91 - 6.13)。非城市地区在分诊不足的患者中识别出分诊标准存在的几率是城市地区的两倍多(p < 0.05)。

结论

非城市地区受伤的患者以及严重损伤原因不太明显的患者更有可能出现分诊不足。通过分析院前临床医生如何选择转运目的地,我们确定了与分诊不足相关的患者和系统因素。针对这些高危人群和影响因素可能有助于减轻分诊不足方面的地区差异。

证据水平

预后和流行病学;三级。

相似文献

3
Undertriage of Trauma-Related Deaths in U.S. Emergency Departments.美国急诊科创伤相关死亡的分诊不足
West J Emerg Med. 2016 May;17(3):315-23. doi: 10.5811/westjem.2016.2.29327. Epub 2016 May 2.

本文引用的文献

1
Undertriage of Severely Injured Trauma Patients.严重创伤患者分诊不足。
Am Surg. 2023 Oct;89(10):4129-4134. doi: 10.1177/00031348231177939. Epub 2023 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验