Suppr超能文献

患者群体对 GPT 生成的与标准急诊部门出院医嘱的看法:随机盲法调查评估。

Patient-Representing Population's Perceptions of GPT-Generated Versus Standard Emergency Department Discharge Instructions: Randomized Blind Survey Assessment.

机构信息

Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States.

Department for Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, United States.

出版信息

J Med Internet Res. 2024 Aug 2;26:e60336. doi: 10.2196/60336.

Abstract

BACKGROUND

Discharge instructions are a key form of documentation and patient communication in the time of transition from the emergency department (ED) to home. Discharge instructions are time-consuming and often underprioritized, especially in the ED, leading to discharge delays and possibly impersonal patient instructions. Generative artificial intelligence and large language models (LLMs) offer promising methods of creating high-quality and personalized discharge instructions; however, there exists a gap in understanding patient perspectives of LLM-generated discharge instructions.

OBJECTIVE

We aimed to assess the use of LLMs such as ChatGPT in synthesizing accurate and patient-accessible discharge instructions in the ED.

METHODS

We synthesized 5 unique, fictional ED encounters to emulate real ED encounters that included a diverse set of clinician history, physical notes, and nursing notes. These were passed to GPT-4 in Azure OpenAI Service (Microsoft) to generate LLM-generated discharge instructions. Standard discharge instructions were also generated for each of the 5 unique ED encounters. All GPT-generated and standard discharge instructions were then formatted into standardized after-visit summary documents. These after-visit summaries containing either GPT-generated or standard discharge instructions were randomly and blindly administered to Amazon MTurk respondents representing patient populations through Amazon MTurk Survey Distribution. Discharge instructions were assessed based on metrics of interpretability of significance, understandability, and satisfaction.

RESULTS

Our findings revealed that survey respondents' perspectives regarding GPT-generated and standard discharge instructions were significantly (P=.01) more favorable toward GPT-generated return precautions, and all other sections were considered noninferior to standard discharge instructions. Of the 156 survey respondents, GPT-generated discharge instructions were assigned favorable ratings, "agree" and "strongly agree," more frequently along the metric of interpretability of significance in discharge instruction subsections regarding diagnosis, procedures, treatment, post-ED medications or any changes to medications, and return precautions. Survey respondents found GPT-generated instructions to be more understandable when rating procedures, treatment, post-ED medications or medication changes, post-ED follow-up, and return precautions. Satisfaction with GPT-generated discharge instruction subsections was the most favorable in procedures, treatment, post-ED medications or medication changes, and return precautions. Wilcoxon rank-sum test of Likert responses revealed significant differences (P=.01) in the interpretability of significant return precautions in GPT-generated discharge instructions compared to standard discharge instructions but not for other evaluation metrics and discharge instruction subsections.

CONCLUSIONS

This study demonstrates the potential for LLMs such as ChatGPT to act as a method of augmenting current documentation workflows in the ED to reduce the documentation burden of physicians. The ability of LLMs to provide tailored instructions for patients by improving readability and making instructions more applicable to patients could improve upon the methods of communication that currently exist.

摘要

背景

在从急诊科(ED)过渡到家庭的过程中,出院说明是一种关键的文档和患者沟通形式。出院说明既耗时又常常被优先考虑,尤其是在急诊科,这导致了出院延迟和可能不人性化的患者说明。生成式人工智能和大型语言模型(LLM)为创建高质量和个性化的出院说明提供了有前途的方法;然而,在理解患者对 LLM 生成的出院说明的看法方面仍存在差距。

目的

我们旨在评估在急诊科使用 ChatGPT 等 LLM 来综合准确且易于患者理解的出院说明。

方法

我们综合了 5 个独特的虚构 ED 就诊,以模拟包括一系列临床医生病史、体检记录和护理记录的真实 ED 就诊。这些信息被传递给 Azure OpenAI Service(微软)中的 GPT-4 以生成 LLM 生成的出院说明。每个独特的 ED 就诊也生成了标准的出院说明。所有 GPT 生成的和标准的出院说明随后都被格式化为标准化的就诊后总结文档。这些就诊后总结文档包含 GPT 生成或标准的出院说明,通过亚马逊 MTurk 调查分配随机和盲目地分发给代表患者群体的亚马逊 MTurk 受访者。根据可解释性、理解性和满意度的指标来评估出院说明。

结果

我们的研究结果表明,调查受访者对 GPT 生成和标准出院说明的看法在出院后预防措施方面有显著差异(P=.01),并且所有其他部分都被认为与标准出院说明无差异。在 156 名调查受访者中,GPT 生成的出院说明在诊断、程序、治疗、ED 后药物或任何药物变化以及出院后预防措施等出院说明子部分的意义可解释性方面,更频繁地被评为“同意”和“强烈同意”。调查受访者发现,在程序、治疗、ED 后药物或药物变化、ED 后随访以及出院后预防措施方面,GPT 生成的说明更容易理解。GPT 生成的出院说明子部分的满意度在程序、治疗、ED 后药物或药物变化以及出院后预防措施方面最高。对 GPT 生成的出院说明子部分的李克特反应进行 Wilcoxon 秩和检验,结果显示,在 GPT 生成的出院说明中,与标准出院说明相比,在意义重大的出院后预防措施的可解释性方面存在显著差异(P=.01),但其他评估指标和出院说明子部分则没有。

结论

本研究表明,像 ChatGPT 这样的 LLM 可以作为一种在急诊科中增强当前文档工作流程的方法,以减轻医生的文档负担。LLM 通过提高可读性和使说明更适用于患者,为患者提供量身定制的说明的能力,可以改进当前存在的沟通方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/768c/11329854/a59ddbb8fa2d/jmir_v26i1e60336_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验