Suppr超能文献

使用深度学习的视网膜眼底图像青光眼诊断多步骤框架

Multi-step framework for glaucoma diagnosis in retinal fundus images using deep learning.

作者信息

Yi Sanli, Zhou Lingxiang

机构信息

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China.

Key Laboratory of Computer Technology Application of Yunnan Province, Kunming, Yunnan, China.

出版信息

Med Biol Eng Comput. 2025 Jan;63(1):1-13. doi: 10.1007/s11517-024-03172-2. Epub 2024 Aug 5.

Abstract

Glaucoma is one of the most common causes of blindness in the world. Screening glaucoma from retinal fundus images based on deep learning is a common method at present. In the diagnosis of glaucoma based on deep learning, the blood vessels within the optic disc interfere with the diagnosis, and there is also some pathological information outside the optic disc in fundus images. Therefore, integrating the original fundus image with the vessel-removed optic disc image can improve diagnostic efficiency. In this paper, we propose a novel multi-step framework named MSGC-CNN that can better diagnose glaucoma. In the framework, (1) we combine glaucoma pathological knowledge with deep learning model, fuse the features of original fundus image and optic disc region in which the interference of blood vessel is specifically removed by U-Net, and make glaucoma diagnosis based on the fused features. (2) Aiming at the characteristics of glaucoma fundus images, such as small amount of data, high resolution, and rich feature information, we design a new feature extraction network RA-ResNet and combined it with transfer learning. In order to verify our method, we conduct binary classification experiments on three public datasets, Drishti-GS, RIM-ONE-R3, and ACRIMA, with accuracy of 92.01%, 93.75%, and 97.87%. The results demonstrate a significant improvement over earlier results.

摘要

青光眼是全球最常见的致盲原因之一。基于深度学习从视网膜眼底图像中筛查青光眼是目前常用的方法。在基于深度学习的青光眼诊断中,视盘内的血管会干扰诊断,并且眼底图像中视盘外也存在一些病理信息。因此,将原始眼底图像与去除血管的视盘图像相结合可以提高诊断效率。在本文中,我们提出了一种名为MSGC-CNN的新型多步骤框架,该框架能够更好地诊断青光眼。在该框架中,(1)我们将青光眼病理知识与深度学习模型相结合,融合原始眼底图像和通过U-Net专门去除血管干扰的视盘区域的特征,并基于融合后的特征进行青光眼诊断。(2)针对青光眼眼底图像数据量少、分辨率高、特征信息丰富的特点,我们设计了一种新的特征提取网络RA-ResNet,并将其与迁移学习相结合。为了验证我们的方法,我们在三个公共数据集Drishti-GS、RIM-ONE-R3和ACRIMA上进行了二分类实验,准确率分别为92.01%、93.75%和97.87%。结果表明,与早期结果相比有显著改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验