Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Adv Mater. 2024 Nov;36(44):e2405953. doi: 10.1002/adma.202405953. Epub 2024 Aug 5.
Implant-associated infections (IAIs) are the main cause of prosthetic implant failure. Bacterial biofilms prevent antibiotic penetration, and the unique metabolic conditions in hypoxic biofilm microenvironment may limit the efficacy of conventional antibiotic treatment. Escaping survival bacteria may not be continually eradicated, resulting in the recurrence of IAIs. Herein, a sonosensitive metal-organic framework of Cu-TCPP (tetrakis(4-carboxyphenyl) porphyrin) nanosheets and tinidazole doped probiotic-derived membrane vesicles (OMVs) with high-penetration sonodynamic therapy (SDT), bacterial metabolic state interference, and bacterial cuproptosis-like death to eradicate IAIs is proposed. The Cu-TCPP can convert O to toxic O through SDT in the normoxic conditions, enhancing the hypoxic microenvironment and activating the antibacterial activity of tinidazole. The released Cu(II) under ultrasound can be converted to Cu(I) by exogenous poly(tannic acid) (pTA) and endogenous glutathione. The disruption of the bacterial membrane by SDT can enhance the Cu(I) transporter activity. Transcriptomics indicate that the SDT-enhanced Cu(I) overload and hypoxia-activated therapy hinder the tricarboxylic acid cycle (TCA), leading to bacterial cuproptosis-like death. Moreover, the OMVs-activated therapy can polarize macrophages to a M2-like phenotype and facilitate bone repair. The sonodynamic biofilm microenvironment modulation strategy, whereby the hypoxia-enhanced microenvironment is potentiated to synergize SDT with OMVs-activated therapy, provides an effective strategy for antibacterial and osteogenesis performance.
植入物相关感染(IAI)是导致假体植入物失效的主要原因。细菌生物膜阻止抗生素渗透,而缺氧生物膜微环境中的独特代谢条件可能限制常规抗生素治疗的效果。逃脱生存的细菌可能不会被持续根除,导致 IAI 的复发。在此,提出了一种具有高穿透声动力疗法(SDT)、细菌代谢状态干扰和细菌铜死亡样死亡的声敏金属有机框架 Cu-TCPP(四(4-羧基苯基)卟啉)纳米片和替硝唑掺杂益生菌衍生膜泡(OMVs),以根除 IAI。在常氧条件下,Cu-TCPP 可通过 SDT 将 O 转化为有毒的 O,从而增强缺氧微环境并激活替硝唑的抗菌活性。超声下释放的 Cu(II)可以通过外源性聚(单宁酸)(pTA)和内源性谷胱甘肽转化为 Cu(I)。SDT 对细菌膜的破坏可以增强 Cu(I)转运蛋白的活性。转录组学表明,SDT 增强的 Cu(I)过载和缺氧激活治疗阻碍三羧酸循环(TCA),导致细菌铜死亡样死亡。此外,OMVs 激活的治疗可以将巨噬细胞极化为 M2 样表型并促进骨修复。声动力生物膜微环境调节策略增强了缺氧微环境,使 SDT 与 OMVs 激活治疗协同作用,为抗菌和成骨性能提供了一种有效的策略。