Pun Sirjana, Prakash Anusha, Demaree Dalee, Krummel Daniel Pomeranz, Sciumè Giuseppe, Sengupta Soma, Barrile Riccardo
Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
Abbvie, Worcester, Massachusetts, 01605, USA.
Adv Healthc Mater. 2024 Dec;13(30):e2401876. doi: 10.1002/adhm.202401876. Epub 2024 Aug 5.
Microphysiological systems (MPSs) reconstitute tissue interfaces and organ functions, presenting a promising alternative to animal models in drug development. However, traditional materials like polydimethylsiloxane (PDMS) often interfere by absorbing hydrophobic molecules, affecting drug testing accuracy. Additive manufacturing, including 3D bioprinting, offers viable solutions. GlioFlow3D, a novel microfluidic platform combining extrusion bioprinting and stereolithography (SLA) is introduced. GlioFlow3D integrates primary human cells and glioblastoma (GBM) lines in hydrogel-based microchannels mimicking vasculature, within an SLA resin framework using cost-effective materials. The study introduces a robust protocol to mitigate SLA resin cytotoxicity. Compared to PDMS, GlioFlow3D demonstrated lower small molecule absorption, which is relevant for accurate testing of small molecules like Temozolomide (TMZ). Computational modeling is used to optimize a pumpless setup simulating interstitial fluid flow dynamics in tissues. Co-culturing GBM with brain endothelial cells in GlioFlow3D showed enhanced CD133 expression and TMZ resistance near vascular interfaces, highlighting spatial drug resistance mechanisms. This PDMS-free platform promises advanced drug testing, improving preclinical research and personalized therapy by elucidating complex GBM drug resistance mechanisms influenced by the tissue microenvironment.
微生理系统(MPSs)可重建组织界面和器官功能,为药物研发中的动物模型提供了一种很有前景的替代方案。然而,聚二甲基硅氧烷(PDMS)等传统材料常常会通过吸收疏水分子产生干扰,影响药物测试的准确性。包括3D生物打印在内的增材制造提供了可行的解决方案。本文介绍了一种新型微流控平台GlioFlow3D,它结合了挤出生物打印和立体光刻(SLA)技术。GlioFlow3D在基于水凝胶的微通道中整合了原代人类细胞和成胶质细胞瘤(GBM)细胞系,这些微通道模拟血管系统,位于使用具有成本效益材料的SLA树脂框架内。该研究介绍了一种减轻SLA树脂细胞毒性的可靠方案。与PDMS相比,GlioFlow3D对小分子的吸收更低,这对于准确测试替莫唑胺(TMZ)等小分子具有重要意义。计算建模用于优化一种无泵装置,以模拟组织中的间质液流动动力学。在GlioFlow3D中将GBM与脑内皮细胞共培养,结果显示在血管界面附近CD133表达增强且对TMZ耐药,突出了空间耐药机制。这个无PDMS的平台有望实现先进的药物测试,通过阐明受组织微环境影响的复杂GBM耐药机制来改善临床前研究和个性化治疗。