Byrne Charles Ethan, Martier Ashley T, Kpeli Gideon Wills, Conrad Kevin Michael, Bralower William, Olsen Elisabet, Fortes Gabrielle, Culp Caroline C, Wendell Max, Boone Keefer A, Burow Matthew R, Mondrinos Mark J
Department of Biomedical Engineering, Tulane University, New Orleans, USA.
Bioinnovation Program, Tulane University, New Orleans, USA.
Biotechnol J. 2024 Dec;19(12):e202400550. doi: 10.1002/biot.202400550.
Microphysiological systems (MPS) containing perfusable vascular beds unlock the ability to model tissue-scale elements of vascular physiology and disease in vitro. Access to inexpensive stereolithography (SLA) 3D printers now enables benchtop fabrication of polydimethylsiloxane (PDMS) organ chips, eliminating the need for cleanroom access and microfabrication expertise, and can facilitate broader adoption of MPS approaches in preclinical research. Rapid prototyping of organ chip mold designs accelerates the processes of design, testing, and iteration, but geometric distortion and surface roughness of SLA resin prints can impede the development of standardizable manufacturing workflows. This study reports postprocessing procedures for manufacturing SLA-printed molds that produce fully cured, flat, patently bonded, and optically clear polydimethyl siloxane (PDMS) organ chips. Injection loading tests were conducted to identify milliscale membrane-free organ chip (MFOC) designs that allowed reproducible device loading by target end-users, a key requirement for broad nonexpert adoption in preclinical research. The optimized milliscale MFOC design was used to develop tissue engineering protocols for (i) driving bulk tissue vasculogenesis in MFOC, and (ii) seeding the bulk tissue interfaces with a confluent endothelium to stimulate self-assembly of perfusable anastomoses with the internal vasculature. Comparison of rocker- and pump-based protocols for flow-conditioning of anastomosed vascular beds revealed that continuous pump-driven flow is required for reproducible barrier maturation throughout the 3D tissue bulk. Demonstrated applications include nanoparticle perfusion and engineering perfusable tumor vasculature. These easily adaptable methods for designing and fabricating vascularized microphysiological systems can accelerate their adoption in a diverse range of preclinical laboratory settings.
包含可灌注血管床的微生理系统(MPS)开启了在体外模拟血管生理学和疾病的组织尺度要素的能力。如今,使用价格低廉的立体光刻(SLA)3D打印机能够在实验台上制造聚二甲基硅氧烷(PDMS)器官芯片,无需进入洁净室,也无需微加工专业知识,并且能够促进MPS方法在临床前研究中的更广泛应用。器官芯片模具设计的快速原型制作加速了设计、测试和迭代过程,但SLA树脂打印件的几何变形和表面粗糙度可能会阻碍标准化制造工作流程的发展。本研究报告了用于制造SLA打印模具的后处理程序,该程序可生产出完全固化、平整、牢固粘结且光学透明的聚二甲基硅氧烷(PDMS)器官芯片。进行了注射加载测试,以确定毫米级无膜器官芯片(MFOC)设计,该设计允许目标终端用户进行可重复的设备加载,这是临床前研究中非专业人员广泛采用的关键要求。优化后的毫米级MFOC设计用于开发组织工程方案,用于(i)在MFOC中驱动大块组织血管生成,以及(ii)在大块组织界面接种汇合的内皮细胞,以刺激与内部血管系统形成可灌注吻合口的自组装。对基于摇床和泵的吻合血管床流动调节方案的比较表明,在整个3D组织块中实现可重复的屏障成熟需要连续的泵驱动流动。展示的应用包括纳米颗粒灌注和构建可灌注的肿瘤血管。这些易于适应的设计和制造血管化微生理系统的方法可以加速它们在各种临床前实验室环境中的应用。