Computer Science Department, Federal University of Rondônia (DACC/UNIR), Porto Velho, Rondônia, Brazil.
Laboratório de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz Rondônia, Porto Velho, Rondônia, Brazil.
PLoS Comput Biol. 2024 Aug 5;20(8):e1012327. doi: 10.1371/journal.pcbi.1012327. eCollection 2024 Aug.
Plasmodium parasites cause Malaria disease, which remains a significant threat to global health, affecting 200 million people and causing 400,000 deaths yearly. Plasmodium falciparum and Plasmodium vivax remain the two main malaria species affecting humans. Identifying the malaria disease in blood smears requires years of expertise, even for highly trained specialists. Literature studies have been coping with the automatic identification and classification of malaria. However, several points must be addressed and investigated so these automatic methods can be used clinically in a Computer-aided Diagnosis (CAD) scenario. In this work, we assess the transfer learning approach by using well-known pre-trained deep learning architectures. We considered a database with 6222 Region of Interest (ROI), of which 6002 are from the Broad Bioimage Benchmark Collection (BBBC), and 220 were acquired locally by us at Fundação Oswaldo Cruz (FIOCRUZ) in Porto Velho Velho, Rondônia-Brazil, which is part of the legal Amazon. We exhaustively cross-validated the dataset using 100 distinct partitions with 80% train and 20% test for each considering circular ROIs (rough segmentation). Our experimental results show that DenseNet201 has a potential to identify Plasmodium parasites in ROIs (infected or uninfected) of microscopic images, achieving 99.41% AUC with a fast processing time. We further validated our results, showing that DenseNet201 was significantly better (99% confidence interval) than the other networks considered in the experiment. Our results support claiming that transfer learning with texture features potentially differentiates subjects with malaria, spotting those with Plasmodium even in Leukocytes images, which is a challenge. In Future work, we intend scale our approach by adding more data and developing a friendly user interface for CAD use. We aim at aiding the worldwide population and our local natives living nearby the legal Amazon's rivers.
疟原虫引起疟疾,这仍然是全球健康的重大威胁,每年影响 2 亿人,导致 40 万人死亡。恶性疟原虫和间日疟原虫仍然是影响人类的两种主要疟疾物种。在血涂片上识别疟疾需要多年的专业知识,即使是对高度训练有素的专家也是如此。文献研究一直在应对疟疾的自动识别和分类。然而,为了使这些自动方法能够在计算机辅助诊断 (CAD) 场景中临床使用,还必须解决和研究几个问题。在这项工作中,我们评估了使用知名预训练深度学习架构的迁移学习方法。我们考虑了一个包含 6222 个感兴趣区域 (ROI) 的数据库,其中 6002 个来自 Broad Bioimage Benchmark Collection (BBBC),220 个是我们在巴西朗多尼亚州奥萨斯科克鲁兹基金会 (FIOCRUZ) 本地采集的,该地区是合法亚马逊地区的一部分。我们使用 100 个不同的分区对数据集进行了详尽的交叉验证,每个分区的训练集占 80%,测试集占 20%,考虑到圆形 ROI(粗糙分割)。我们的实验结果表明,DenseNet201 有可能识别微观图像中 ROI(感染或未感染)中的疟原虫寄生虫,在快速处理时间内达到 99.41%的 AUC。我们进一步验证了我们的结果,表明 DenseNet201 明显优于实验中考虑的其他网络(99%置信区间)。我们的结果支持声称,使用纹理特征的迁移学习有可能区分疟疾患者,即使在白细胞图像中也能发现疟原虫,这是一个挑战。在未来的工作中,我们打算通过添加更多的数据和开发一个用于 CAD 使用的友好用户界面来扩展我们的方法。我们的目标是帮助全球人口和我们居住在合法亚马逊河附近的当地原住民。