Suppr超能文献

深度学习算法在疟疾疾病诊断中的性能分析

Performance Analysis of Deep Learning Algorithms in Diagnosis of Malaria Disease.

作者信息

Hemachandran K, Alasiry Areej, Marzougui Mehrez, Ganie Shahid Mohammad, Pise Anil Audumbar, Alouane M Turki-Hadj, Chola Channabasava

机构信息

Department of Analytics, School of Business, Woxsen University, Hyderabad 502345, Telangana, India.

College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 Feb 1;13(3):534. doi: 10.3390/diagnostics13030534.

Abstract

Malaria is predominant in many subtropical nations with little health-monitoring infrastructure. To forecast malaria and condense the disease's impact on the population, time series prediction models are necessary. The conventional technique of detecting malaria disease is for certified technicians to examine blood smears visually for parasite-infected RBC (red blood cells) underneath a microscope. This procedure is ineffective, and the diagnosis depends on the individual performing the test and his/her experience. Automatic image identification systems based on machine learning have previously been used to diagnose malaria blood smears. However, so far, the practical performance has been insufficient. In this paper, we have made a performance analysis of deep learning algorithms in the diagnosis of malaria disease. We have used Neural Network models like CNN, MobileNetV2, and ResNet50 to perform this analysis. The dataset was extracted from the National Institutes of Health (NIH) website and consisted of 27,558 photos, including 13,780 parasitized cell images and 13,778 uninfected cell images. In conclusion, the MobileNetV2 model outperformed by achieving an accuracy rate of 97.06% for better disease detection. Also, other metrics like training and testing loss, precision, recall, fi-score, and ROC curve were calculated to validate the considered models.

摘要

疟疾在许多卫生监测基础设施薄弱的亚热带国家较为普遍。为了预测疟疾并浓缩该疾病对人群的影响,时间序列预测模型是必要的。检测疟疾的传统技术是由经过认证的技术人员在显微镜下目视检查血涂片,以查找寄生虫感染的红细胞(RBC)。此过程效率低下,诊断取决于进行测试的个人及其经验。以前曾使用基于机器学习的自动图像识别系统来诊断疟疾血涂片。然而,到目前为止,实际性能还不够。在本文中,我们对深度学习算法在疟疾诊断中的性能进行了分析。我们使用了诸如CNN、MobileNetV2和ResNet50等神经网络模型来进行此分析。数据集从美国国立卫生研究院(NIH)网站提取,由27558张照片组成,包括13780张寄生虫感染细胞图像和13778张未感染细胞图像。总之,MobileNetV2模型表现出色,实现了97.06%的准确率,以实现更好的疾病检测。此外,还计算了训练和测试损失、精度、召回率、F1分数和ROC曲线等其他指标,以验证所考虑的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/845f/9914762/f82deaca3d02/diagnostics-13-00534-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验