Suppr超能文献

脉冲神经网络中的巧合检测与整合行为

Coincidence detection and integration behavior in spiking neural networks.

作者信息

Stoll Andreas, Maier Andreas, Krauss Patrick, Gerum Richard, Schilling Achim

机构信息

Pattern Recognition Lab, University Erlangen-Nürnberg, Erlangen, Germany.

Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany.

出版信息

Cogn Neurodyn. 2024 Aug;18(4):1753-1765. doi: 10.1007/s11571-023-10038-0. Epub 2023 Dec 13.

Abstract

UNLABELLED

Recently, the interest in spiking neural networks (SNNs) remarkably increased, as up to now some key advances of biological neural networks are still out of reach. Thus, the energy efficiency and the ability to dynamically react and adapt to input stimuli as observed in biological neurons is still difficult to achieve. One neuron model commonly used in SNNs is the leaky-integrate-and-fire (LIF) neuron. LIF neurons already show interesting dynamics and can be run in two operation modes: coincidence detectors for low and integrators for high membrane decay times, respectively. However, the emergence of these modes in SNNs and the consequence on network performance and information processing ability is still elusive. In this study, we examine the effect of different decay times in SNNs trained with a surrogate-gradient-based approach. We propose two measures that allow to determine the operation mode of LIF neurons: the number of contributing input spikes and the effective integration interval. We show that coincidence detection is characterized by a low number of input spikes as well as short integration intervals, whereas integration behavior is related to many input spikes over long integration intervals. We find the two measures to linearly correlate via a correlation factor that depends on the decay time. Thus, the correlation factor as function of the decay time shows a powerlaw behavior, which could be an intrinsic property of LIF networks. We argue that our work could be a starting point to further explore the operation modes in SNNs to boost efficiency and biological plausibility.

SUPPLEMENTARY INFORMATION

The online version of this article (10.1007/s11571-023-10038-0) contains supplementary material, which is available to authorized users.

摘要

未标注

最近,对脉冲神经网络(SNN)的兴趣显著增加,因为到目前为止,生物神经网络的一些关键进展仍难以实现。因此,生物神经元中所观察到的能量效率以及动态反应和适应输入刺激的能力仍然难以达成。SNN中常用的一种神经元模型是泄漏积分发放(LIF)神经元。LIF神经元已经展现出有趣的动态特性,并且可以在两种操作模式下运行:分别作为低膜衰减时间的重合探测器和高膜衰减时间的积分器。然而,这些模式在SNN中的出现以及对网络性能和信息处理能力的影响仍然难以捉摸。在本研究中,我们研究了采用基于替代梯度方法训练的SNN中不同衰减时间的影响。我们提出了两种措施,可用于确定LIF神经元的操作模式:贡献输入脉冲的数量和有效积分间隔。我们表明,重合检测的特征是输入脉冲数量少以及积分间隔短,而积分行为与长积分间隔内的许多输入脉冲有关。我们发现这两种措施通过一个依赖于衰减时间的相关因子线性相关。因此,作为衰减时间函数的相关因子呈现幂律行为,这可能是LIF网络的一个固有特性。我们认为我们的工作可能是进一步探索SNN中的操作模式以提高效率和生物合理性的一个起点。

补充信息

本文的在线版本(10.1007/s11571-023-10038-0)包含补充材料,可供授权用户使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb5/11297875/538cafaffc78/11571_2023_10038_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验