https://ror.org/03rmrcq20Bioinformatics Graduate Program, University of British Columbia, Vancouver, Canada.
BC Cancer Research, Vancouver, Canada.
Life Sci Alliance. 2024 Aug 6;7(10). doi: 10.26508/lsa.202402713. Print 2024 Oct.
Probabilistic topic modelling has become essential in many types of single-cell data analysis. Based on probabilistic topic assignments in each cell, we identify the latent representation of cellular states. A dictionary matrix, consisting of topic-specific gene frequency vectors, provides interpretable bases to be compared with known cell type-specific marker genes and other pathway annotations. However, fitting a topic model on a large number of cells would require heavy computational resources-specialized computing units, computing time and memory. Here, we present a scalable approximation method customized for single-cell RNA-seq data analysis, termed ASAP, short for Annotating a Single-cell data matrix by Approximate Pseudobulk estimation. Our approach is more accurate than existing methods but requires orders of magnitude less computing time, leaving much lower memory consumption. We also show that our approach is widely applicable for atlas-scale data analysis; our method seamlessly integrates single-cell and bulk data in joint analysis, not requiring additional preprocessing or feature selection steps.
概率主题建模在许多类型的单细胞数据分析中已变得至关重要。基于每个细胞中的概率主题分配,我们确定了细胞状态的潜在表示。字典矩阵由特定主题的基因频率向量组成,提供了可解释的基础,可以与已知的细胞类型特异性标记基因和其他途径注释进行比较。然而,在大量细胞上拟合主题模型需要大量的计算资源——专门的计算单元、计算时间和内存。在这里,我们提出了一种针对单细胞 RNA-seq 数据分析定制的可扩展近似方法,称为 ASAP,即通过近似伪总体估计来注释单细胞数据矩阵的缩写。我们的方法比现有方法更准确,但所需的计算时间要少几个数量级,从而大大降低了内存消耗。我们还表明,我们的方法广泛适用于图谱规模的数据分析;我们的方法可以无缝地将单细胞和批量数据集成到联合分析中,不需要额外的预处理或特征选择步骤。