Marticorena Dom C P, Wong Quinn Wai, Browning Jake, Wilbur Ken, Davey Pinakin Gunvant, Seitz Aaron R, Gardner Jacob R, Barbour Dennis L
Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA.
J Vis. 2024 Aug 1;24(8):6. doi: 10.1167/jov.24.8.6.
Recent advances in nonparametric contrast sensitivity function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine learning CSF estimation with Gaussian processes allows for design optimization in the kernel, acquisition function, and underlying task representation, to name a few. This article describes a novel kernel for CSF estimation that is more flexible than a kernel based on strictly functional forms. Despite being more flexible, it can result in a more efficient estimator. Further, trial selection for data acquisition that is generalized beyond pure information gain can also improve estimator quality. Finally, introducing latent variable representations underlying general CSF shapes can enable simultaneous estimation of multiple CSFs, such as from different eyes, eccentricities, or luminances. The conditions under which the new procedures perform better than previous nonparametric estimation procedures are presented and quantified.
非参数对比敏感度函数(CSF)估计的最新进展在准确性和效率之间产生了一种新的权衡,这是经典参数估计器所不具备的。这个新框架的另一个优点是能够独立调整估计器的多个方面以寻求进一步改进。使用高斯过程进行机器学习CSF估计允许在内核、采集函数和基础任务表示等方面进行设计优化,仅举几例。本文描述了一种用于CSF估计的新型内核,它比基于严格函数形式的内核更灵活。尽管更灵活,但它可以产生更高效的估计器。此外,超越纯信息增益的广义数据采集试验选择也可以提高估计器质量。最后,引入一般CSF形状背后的潜在变量表示可以实现多个CSF的同时估计,例如来自不同眼睛、不同偏心度或不同亮度的CSF。本文给出并量化了新方法比以前的非参数估计方法表现更好的条件。