Suppr超能文献

通过将空间转录组学与组织学相结合来推断超分辨率组织结构。

Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology.

机构信息

Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.

出版信息

Nat Biotechnol. 2024 Sep;42(9):1372-1377. doi: 10.1038/s41587-023-02019-9. Epub 2024 Jan 2.

Abstract

Spatial transcriptomics (ST) has demonstrated enormous potential for generating intricate molecular maps of cells within tissues. Here we present iStar, a method based on hierarchical image feature extraction that integrates ST data and high-resolution histology images to predict spatial gene expression with super-resolution. Our method enhances gene expression resolution to near-single-cell levels in ST and enables gene expression prediction in tissue sections where only histology images are available.

摘要

空间转录组学(ST)在生成组织内细胞的复杂分子图谱方面显示出巨大的潜力。在这里,我们提出了一种基于分层图像特征提取的方法 iStar,它将 ST 数据和高分辨率组织学图像集成在一起,以超分辨率预测空间基因表达。我们的方法将 ST 中的基因表达分辨率提高到接近单细胞水平,并能够在仅提供组织学图像的组织切片中预测基因表达。

相似文献

1
Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology.
Nat Biotechnol. 2024 Sep;42(9):1372-1377. doi: 10.1038/s41587-023-02019-9. Epub 2024 Jan 2.
4
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.
J Bone Miner Res. 2024 Dec 31;40(1):20-26. doi: 10.1093/jbmr/zjae151.
7
A visual-omics foundation model to bridge histopathology with spatial transcriptomics.
Nat Methods. 2025 May 29. doi: 10.1038/s41592-025-02707-1.
9
A comprehensive review of spatial transcriptomics data alignment and integration.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf536.

引用本文的文献

4
Predicting fine-grained cell types from histology images through cross-modal learning in spatial transcriptomics.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i115-i124. doi: 10.1093/bioinformatics/btaf201.
5
PIVOT: an open-source tool for multi-omic spatial data registration.
bioRxiv. 2025 Jun 8:2025.06.08.658506. doi: 10.1101/2025.06.08.658506.
6
Informatics at the Frontier of Cancer Research.
Cancer Res. 2025 Aug 15;85(16):2967-2986. doi: 10.1158/0008-5472.CAN-24-2829.
9
Spatially Resolved Panoramic in vivo CRISPR Screen via Perturb-DBiT.
Res Sq. 2025 May 8:rs.3.rs-6481967. doi: 10.21203/rs.3.rs-6481967/v1.
10
Cell-type deconvolution methods for spatial transcriptomics.
Nat Rev Genet. 2025 May 14. doi: 10.1038/s41576-025-00845-y.

本文引用的文献

1
Next-Generation Morphometry for pathomics-data mining in histopathology.
Nat Commun. 2023 Jan 28;14(1):470. doi: 10.1038/s41467-023-36173-0.
2
Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer.
Cell. 2023 Jan 19;186(2):363-381.e19. doi: 10.1016/j.cell.2022.12.028.
3
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.
Cell. 2022 May 12;185(10):1777-1792.e21. doi: 10.1016/j.cell.2022.04.003. Epub 2022 May 4.
4
Spatially informed cell-type deconvolution for spatial transcriptomics.
Nat Biotechnol. 2022 Sep;40(9):1349-1359. doi: 10.1038/s41587-022-01273-7. Epub 2022 May 2.
5
B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome.
Nat Rev Clin Oncol. 2022 Jul;19(7):441-457. doi: 10.1038/s41571-022-00619-z. Epub 2022 Apr 1.
6
Super-resolved spatial transcriptomics by deep data fusion.
Nat Biotechnol. 2022 Apr;40(4):476-479. doi: 10.1038/s41587-021-01075-3. Epub 2021 Nov 29.
9
A single-cell and spatially resolved atlas of human breast cancers.
Nat Genet. 2021 Sep;53(9):1334-1347. doi: 10.1038/s41588-021-00911-1. Epub 2021 Sep 6.
10
SpaceM reveals metabolic states of single cells.
Nat Methods. 2021 Jul;18(7):799-805. doi: 10.1038/s41592-021-01198-0. Epub 2021 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验