Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.
Nat Biotechnol. 2024 Sep;42(9):1372-1377. doi: 10.1038/s41587-023-02019-9. Epub 2024 Jan 2.
Spatial transcriptomics (ST) has demonstrated enormous potential for generating intricate molecular maps of cells within tissues. Here we present iStar, a method based on hierarchical image feature extraction that integrates ST data and high-resolution histology images to predict spatial gene expression with super-resolution. Our method enhances gene expression resolution to near-single-cell levels in ST and enables gene expression prediction in tissue sections where only histology images are available.
空间转录组学(ST)在生成组织内细胞的复杂分子图谱方面显示出巨大的潜力。在这里,我们提出了一种基于分层图像特征提取的方法 iStar,它将 ST 数据和高分辨率组织学图像集成在一起,以超分辨率预测空间基因表达。我们的方法将 ST 中的基因表达分辨率提高到接近单细胞水平,并能够在仅提供组织学图像的组织切片中预测基因表达。
J Bone Miner Res. 2024-12-31
Nat Methods. 2025-5-29
Nucleic Acids Res. 2025-6-20
bioRxiv. 2025-6-8
Cancer Res. 2025-8-15
Nat Rev Genet. 2025-5-14
Nat Commun. 2023-1-28
Nat Biotechnol. 2022-9
Nat Biotechnol. 2022-4
Nat Genet. 2021-9
Nat Methods. 2021-7