文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过将空间转录组学与组织学相结合来推断超分辨率组织结构。

Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology.

机构信息

Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.

出版信息

Nat Biotechnol. 2024 Sep;42(9):1372-1377. doi: 10.1038/s41587-023-02019-9. Epub 2024 Jan 2.


DOI:10.1038/s41587-023-02019-9
PMID:38168986
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11260191/
Abstract

Spatial transcriptomics (ST) has demonstrated enormous potential for generating intricate molecular maps of cells within tissues. Here we present iStar, a method based on hierarchical image feature extraction that integrates ST data and high-resolution histology images to predict spatial gene expression with super-resolution. Our method enhances gene expression resolution to near-single-cell levels in ST and enables gene expression prediction in tissue sections where only histology images are available.

摘要

空间转录组学(ST)在生成组织内细胞的复杂分子图谱方面显示出巨大的潜力。在这里,我们提出了一种基于分层图像特征提取的方法 iStar,它将 ST 数据和高分辨率组织学图像集成在一起,以超分辨率预测空间基因表达。我们的方法将 ST 中的基因表达分辨率提高到接近单细胞水平,并能够在仅提供组织学图像的组织切片中预测基因表达。

相似文献

[1]
Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology.

Nat Biotechnol. 2024-9

[2]
stGRL: spatial domain identification, denoising, and imputation algorithm for spatial transcriptome data based on multi-task graph contrastive representation learning.

BMC Biol. 2025-7-1

[3]
SpatialDeX Is a Reference-Free Method for Cell-Type Deconvolution of Spatial Transcriptomics Data in Solid Tumors.

Cancer Res. 2025-1-2

[4]
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.

J Bone Miner Res. 2024-12-31

[5]
Gene Spatial Integration: enhancing spatial transcriptomics analysis via deep learning and batch effect mitigation.

Bioinformatics. 2025-6-13

[6]
Integrated analysis of single-cell RNA-seq and spatial transcriptomics to identify the lactylation-related protein TUBB2A as a potential biomarker for glioblastoma in cancer cells by machine learning.

Front Immunol. 2025-6-26

[7]
A visual-omics foundation model to bridge histopathology with spatial transcriptomics.

Nat Methods. 2025-5-29

[8]
Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges.

Genes Dev. 2025-1-7

[9]
A comprehensive review of spatial transcriptomics data alignment and integration.

Nucleic Acids Res. 2025-6-20

[10]
Inferring single-cell resolution spatial gene expression via fusing spot-based spatial transcriptomics, location, and histology using GCN.

Brief Bioinform. 2024-11-22

引用本文的文献

[1]
SpaVGN: A hybrid deep learning framework for high-resolution spatial transcriptomics data reconstruction and spatial domain identification.

PLoS One. 2025-8-14

[2]
Integrated in vivo combinatorial functional genomics and spatial transcriptomics of tumours to decode genotype-to-phenotype relationships.

Nat Biomed Eng. 2025-7-28

[3]
STHD: probabilistic cell typing of single spots in whole transcriptome spatial data with high definition.

Genome Biol. 2025-7-18

[4]
Predicting fine-grained cell types from histology images through cross-modal learning in spatial transcriptomics.

Bioinformatics. 2025-7-1

[5]
PIVOT: an open-source tool for multi-omic spatial data registration.

bioRxiv. 2025-6-8

[6]
Informatics at the Frontier of Cancer Research.

Cancer Res. 2025-8-15

[7]
Bridging cell morphological behaviors and molecular dynamics in multi-modal spatial omics with MorphLink.

Nat Commun. 2025-7-1

[8]
AI-Driven Transcriptome Prediction in Human Pathology: From Molecular Insights to Clinical Applications.

Biology (Basel). 2025-6-4

[9]
Spatially Resolved Panoramic in vivo CRISPR Screen via Perturb-DBiT.

Res Sq. 2025-5-8

[10]
Cell-type deconvolution methods for spatial transcriptomics.

Nat Rev Genet. 2025-5-14

本文引用的文献

[1]
Next-Generation Morphometry for pathomics-data mining in histopathology.

Nat Commun. 2023-1-28

[2]
Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer.

Cell. 2023-1-19

[3]
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

Cell. 2022-5-12

[4]
Spatially informed cell-type deconvolution for spatial transcriptomics.

Nat Biotechnol. 2022-9

[5]
B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome.

Nat Rev Clin Oncol. 2022-7

[6]
Super-resolved spatial transcriptomics by deep data fusion.

Nat Biotechnol. 2022-4

[7]
SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network.

Nat Methods. 2021-11

[8]
Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions.

Nat Commun. 2021-10-14

[9]
A single-cell and spatially resolved atlas of human breast cancers.

Nat Genet. 2021-9

[10]
SpaceM reveals metabolic states of single cells.

Nat Methods. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索