Suppr超能文献

混沌打印:利用混沌以高分辨率和速度制造密集排列的微纳结构。

Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed.

作者信息

Trujillo-de Santiago Grissel, Alvarez Mario Moisés, Samandari Mohamadmahdi, Prakash Gyan, Chandrabhatla Gouri, Rellstab-Sánchez Pamela Inés, Byambaa Batzaya, Abadi Parisa Pour Shahid Saeed, Mandla Serena, Avery Reginald K, Vallejo-Arroyo Alejandro, Nasajpour Amir, Annabi Nasim, Zhang Yu Shrike, Khademhosseini Ali

机构信息

Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA.

Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA.

出版信息

Mater Horiz. 2018 Sep 1;5(5):813-822. doi: 10.1039/C8MH00344K. Epub 2018 Jul 3.

Abstract

Nature generates densely packed micro- and nanostructures to enable key functionalities in cells, tissues, and other materials. Current fabrication techniques, due to limitations in resolution and speed, are far less effective at creating microstructures. Yet, the development of extensive amounts of surface area per unit volume will enable applications and manufacturing strategies not possible today. Here, we introduce chaotic printing-the use of chaotic flows for the rapid generation of complex, high-resolution microstructures. A simple and deterministic chaotic flow is induced in a viscous liquid, and its repeated stretching and folding action deforms an "ink" (, a drop of a miscible liquid, fluorescent beads, or cells) at an exponential rate to render a densely packed lamellar microstructure that is then preserved by curing or photocrosslinking. This exponentially fast creation of fine microstructures exceeds the limits of resolution and speed of the currently available 3D printing techniques. Moreover, we show that the architecture of the microstructure to be created with chaotic printing can be predicted by mathematical modelling. We envision diverse applications for this technology, including the development of densely packed catalytic surfaces and highly complex multi-lamellar and multi-component tissue-like structures for biomedical and electronics applications.

摘要

自然界生成了密集排列的微观和纳米结构,以实现细胞、组织及其他材料中的关键功能。由于分辨率和速度的限制,当前的制造技术在创建微观结构方面效率要低得多。然而,每单位体积大量表面积的开发将带来如今无法实现的应用和制造策略。在此,我们引入混沌打印——利用混沌流快速生成复杂的高分辨率微观结构。在粘性液体中诱导出简单且确定性的混沌流,其反复的拉伸和折叠作用以指数速率使“墨水”(一种可混溶液体的液滴、荧光珠或细胞)变形,从而形成密集排列的层状微观结构,然后通过固化或光交联将其保存下来。这种以指数速度快速创建精细微观结构的方式超越了当前可用3D打印技术的分辨率和速度极限。此外,我们表明,可以通过数学建模预测用混沌打印创建的微观结构的架构。我们设想这项技术有多种应用,包括开发密集排列的催化表面以及用于生物医学和电子应用的高度复杂的多层和多组分组织样结构。

相似文献

3
Chaotic (bio)printing in the context of drug delivery systems.药物递送系统背景下的混沌(生物)打印
Adv Drug Deliv Rev. 2025 Jan;216:115475. doi: 10.1016/j.addr.2024.115475. Epub 2024 Nov 17.
6
3D printing of conducting polymers.导电聚合物的 3D 打印。
Nat Commun. 2020 Mar 30;11(1):1604. doi: 10.1038/s41467-020-15316-7.

引用本文的文献

5
Fabricating the cartilage: recent achievements.软骨制造:近期成果
Cytotechnology. 2023 Aug;75(4):269-292. doi: 10.1007/s10616-023-00582-2. Epub 2023 May 26.
6
Microfluidics-enabled functional 3D printing.基于微流控技术的功能性3D打印
Biomicrofluidics. 2022 Mar 3;16(2):021501. doi: 10.1063/5.0083673. eCollection 2022 Mar.
8
From Shape to Function: The Next Step in Bioprinting.从形状到功能:生物打印的下一步。
Adv Mater. 2020 Mar;32(12):e1906423. doi: 10.1002/adma.201906423. Epub 2020 Feb 11.

本文引用的文献

5
Chaos as an intermittently forced linear system.作为间歇强迫线性系统的混沌
Nat Commun. 2017 May 30;8(1):19. doi: 10.1038/s41467-017-00030-8.
6
Contacts between the endoplasmic reticulum and other membranes in neurons.神经元中内质网和其他膜之间的接触。
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):E4859-E4867. doi: 10.1073/pnas.1701078114. Epub 2017 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验