Suppr超能文献

通过火焰喷雾热解制备钽酸锂纳米颗粒:理解锂掺入钽酸晶格的过程。

Engineering of LiTaO Nanoparticles by Flame Spray Pyrolysis: Understanding Li-Incorporation into the TaO Lattice.

作者信息

Psathas Pavlos, Zindrou Areti, Spyrou Anastasia V, Deligiannakis Yiannis

机构信息

Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece.

出版信息

Nanomaterials (Basel). 2024 Jul 27;14(15):1257. doi: 10.3390/nano14151257.

Abstract

Lithium tantalate (LiTaO) perovskite finds wide use in pyroelectric detectors, optical waveguides and piezoelectric transducers, stemming from its good mechanical and chemical stability and optical transparency. Herein, we present a method for synthesis of LiTaO nanoparticles using a scalable Flame Spray Pyrolysis (FSP) technology, that allows the formation of LiTaO nanomaterials in a single step. Raman, XRD and TEM studies allow for comprehension of the formation mechanism of the LiTaO nanophases, with particular emphasis on the penetration of Li atoms into the Ta-oxide lattice. We show that, control of the High-Temperature Particle Residence Time (HTPRT) in the FSP flame, is the key-parameter that allows successful penetration of the -otherwise amorphous- Li phase into the TaO nanophase. In this way, via control of the HTPRT in the FSP process, we synthesized a series of nanostructured LiTaO particles of varying phase composition from {amorphous Li/TaO/LiTaO} to {pure LiTaO, 15-25 nm}. Finally, the photophysical activity of the FSP-made LiTaO was validated for photocatalytic H production from HO. These data are discussed in conjunction with the role of the phase composition of the LiTaO nanoparticles. More generally, the present work allows a better understanding of the mechanism of ABO perovskite formation that requires the incorporation of two cations, A and B, into the nanolattice.

摘要

钽酸锂(LiTaO)钙钛矿因其良好的机械和化学稳定性以及光学透明性,在热释电探测器、光波导和压电换能器中得到广泛应用。在此,我们展示了一种使用可扩展的火焰喷雾热解(FSP)技术合成LiTaO纳米颗粒的方法,该方法能够一步形成LiTaO纳米材料。拉曼光谱、X射线衍射(XRD)和透射电子显微镜(TEM)研究有助于理解LiTaO纳米相的形成机制,尤其着重于Li原子向Ta氧化物晶格的渗透。我们表明,控制FSP火焰中的高温颗粒停留时间(HTPRT)是使原本无定形的Li相成功渗透到TaO纳米相中的关键参数。通过这种方式,通过控制FSP过程中的HTPRT,我们合成了一系列具有不同相组成的纳米结构LiTaO颗粒,从{无定形Li/TaO/LiTaO}到{纯LiTaO,15 - 25纳米}。最后,通过光催化由H₂O产生H₂验证了FSP制备的LiTaO的光物理活性。结合LiTaO纳米颗粒的相组成作用对这些数据进行了讨论。更一般地说,本工作有助于更好地理解ABO钙钛矿形成机制,该机制需要将两种阳离子A和B掺入纳米晶格中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8490/11314277/e7dcfd77fd1e/nanomaterials-14-01257-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验