Institute for Computational Biomedicine, Heidelberg University & Heidelberg University Hospital, Heidelberg, Germany.
Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany.
Nat Commun. 2024 Jun 11;15(1):4994. doi: 10.1038/s41467-024-48868-z.
Single-cell transcriptomics and spatially-resolved imaging/sequencing technologies have revolutionized biomedical research. However, they suffer from lack of spatial information and a trade-off of resolution and gene coverage, respectively. We propose DOT, a multi-objective optimization framework for transferring cellular features across these data modalities, thus integrating their complementary information. DOT uses genes beyond those common to the data modalities, exploits the local spatial context, transfers spatial features beyond cell-type information, and infers absolute/relative abundance of cell populations at tissue locations. Thus, DOT bridges single-cell transcriptomics data with both high- and low-resolution spatially-resolved data. Moreover, DOT combines practical aspects related to cell composition, heterogeneity, technical effects, and integration of prior knowledge. Our fast implementation based on the Frank-Wolfe algorithm achieves state-of-the-art or improved performance in localizing cell features in high- and low-resolution spatial data and estimating the expression of unmeasured genes in low-coverage spatial data.
单细胞转录组学和空间分辨成像/测序技术已经彻底改变了生物医学研究。然而,它们分别缺乏空间信息,分辨率和基因覆盖度也存在权衡。我们提出了 DOT,这是一种用于在这些数据模态之间转移细胞特征的多目标优化框架,从而整合它们的互补信息。DOT 使用超出数据模态共同的基因,利用局部空间上下文,传递超出细胞类型信息的空间特征,并推断组织位置处细胞群体的绝对/相对丰度。因此,DOT 将单细胞转录组学数据与高分辨率和低分辨率空间分辨数据联系起来。此外,DOT 结合了与细胞组成、异质性、技术效应以及先验知识整合相关的实际方面。我们基于 Frank-Wolfe 算法的快速实现,在高分辨率和低分辨率空间数据中定位细胞特征以及在低覆盖度空间数据中估计未测量基因的表达方面实现了最先进的或改进的性能。