Suppr超能文献

鉴定与耐受相关的生物标志物。

Identification of Biomarkers Associated with Tolerance.

机构信息

Department of Chemistry, Tshwane University of Technology, P.O. Box 680, Pretoria 0001, South Africa.

Department of Biotechnology and Food Technology, Tshwane University of Technology, P.O. Box 680, Pretoria 0001, South Africa.

出版信息

Molecules. 2024 Jul 29;29(15):3582. doi: 10.3390/molecules29153582.

Abstract

Citrus black spot (CBS) is a fungal disease caused by Kiely, (McAlpine Van der Aa), with most cultivars being susceptible to infection. Currently, disease control is based on the application of protective fungicides, which is restricted due to resistance, health and environmental concerns. Although using natural products for disease management is gaining momentum, more advances are required. This study obtained the metabolic profiles of the essential oil and cuticular waxes of two citrus cultivars with a varying susceptibility to CBS infection using gas chromatography-mass spectrometry. A multivariate data analysis identified possible biomarker compounds that contributed to the difference in susceptibility between the two cultivars. Several identified biomarkers were tested in vitro for their antifungal properties against . Two biomarkers, propanoic acid and linalool, were able to completely inhibit pathogen growth at 750 mg/L and 2000 mg/L, respectively.

摘要

柑橘黑斑病(CBS)是一种由 Kiely(McAlpine Van der Aa)引起的真菌病,大多数品种易受感染。目前,疾病控制基于保护性杀真菌剂的应用,由于抗性、健康和环境问题,这种方法受到限制。尽管利用天然产物进行疾病管理的趋势正在增强,但仍需要更多的进展。本研究使用气相色谱-质谱法获得了对 CBS 感染具有不同易感性的两种柑橘品种的精油和角质层蜡的代谢谱。多元数据分析确定了可能导致两个品种易感性差异的生物标志物化合物。对几种鉴定出的生物标志物进行了体外抗真菌活性测试。两种生物标志物,丙酸和芳樟醇,分别在 750mg/L 和 2000mg/L 时能够完全抑制病原菌的生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cd8/11313913/285b22ef971c/molecules-29-03582-g001.jpg

相似文献

1
Identification of Biomarkers Associated with Tolerance.
Molecules. 2024 Jul 29;29(15):3582. doi: 10.3390/molecules29153582.
3
Phyllosticta citricarpa and sister species of global importance to Citrus.
Mol Plant Pathol. 2019 Dec;20(12):1619-1635. doi: 10.1111/mpp.12861. Epub 2019 Sep 11.
4
Biological activity of Diaporthe terebinthifolii extracts against Phyllosticta citricarpa.
FEMS Microbiol Lett. 2017 Mar 1;364(5). doi: 10.1093/femsle/fnx026.
6
Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa.
Microbiol Res. 2016 May-Jun;186-187:153-60. doi: 10.1016/j.micres.2016.04.002. Epub 2016 Apr 9.
7
Secondary metabolites produced by Microbacterium sp. LGMB471 with antifungal activity against the phytopathogen Phyllosticta citricarpa.
Folia Microbiol (Praha). 2019 May;64(3):453-460. doi: 10.1007/s12223-018-00668-x. Epub 2018 Dec 18.
9
Pathogenicity of Phyllosticta citricarpa Ascospores on Citrus spp.
Plant Dis. 2018 Jul;102(7):1386-1393. doi: 10.1094/PDIS-08-17-1331-RE. Epub 2018 May 11.

本文引用的文献

1
Multiplatform untargeted metabolomics.
Magn Reson Chem. 2023 Dec;61(12):628-653. doi: 10.1002/mrc.5350. Epub 2023 Apr 17.
2
Propionic acid disrupts endocytosis, cell cycle, and cellular respiration in yeast.
BMC Res Notes. 2021 Aug 28;14(1):335. doi: 10.1186/s13104-021-05752-z.
3
Linking Plant Secondary Metabolites and Plant Microbiomes: A Review.
Front Plant Sci. 2021 Mar 2;12:621276. doi: 10.3389/fpls.2021.621276. eCollection 2021.
5
Phyllosticta citricarpa and sister species of global importance to Citrus.
Mol Plant Pathol. 2019 Dec;20(12):1619-1635. doi: 10.1111/mpp.12861. Epub 2019 Sep 11.
6
Plant Secondary Metabolite-Derived Polymers: A Potential Approach to Develop Antimicrobial Films.
Polymers (Basel). 2018 May 10;10(5):515. doi: 10.3390/polym10050515.
9
A Statistical Evaluation of Methods of In-Vitro Growth Assessment for Phyllosticta citricarpa: Average Colony Diameter vs. Area.
PLoS One. 2017 Jan 26;12(1):e0170755. doi: 10.1371/journal.pone.0170755. eCollection 2017.
10
A novel fungal killing mechanism of propionic acid.
FEMS Yeast Res. 2016 Nov;16(7). doi: 10.1093/femsyr/fow089. Epub 2016 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验