Mesdaghi Shahram, Price Rebecca, Li Ming, Migrino Raymond Q, Madine Jillian, Rigden Daniel J
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
bioRxiv. 2024 Jul 29:2024.07.27.605412. doi: 10.1101/2024.07.27.605412.
Recent studies have indicated that the human amyloidogenic protein medin is associated with a range of vascular diseases, including aortic aneurysms, vascular dementia, and Alzheimer's disease. Medin accumulates in the vasculature with age, leading to endothelial dysfunction through oxidative and nitrative stress and inducing pro-inflammatory activation. Medin is a cleavage product from the C2 domain of MfgE8. The exact mechanism of medin production from MfgE8 is unknown, with crystal structures of homologous C2 domains suggesting that the cleavage sites are buried, requiring a conformational transition for medin production. Molecular dynamics simulations can explore a wide range of conformations, from small-scale bond rotations to large-scale changes like protein folding or ligand binding. This study employed a combination of full-atom and coarse-grained molecular dynamics simulations, along with CONCOORD- and AlphaFold2-generated models, to investigate MfgE8 conformations and their implications for medin cleavage site accessibility. The simulations revealed that MfgE8 tends to adopt a compact conformation with the RGD motif, important for cell attachment within the N-terminal domain, and the medin region in the C-terminal domain close in proximity. Formation of this compact structure is facilitated by interdomain electrostatic interactions that promote stability and in turn decrease the solvent-accessible surface area of the medin region and particularly the C-terminal medin cleavage site. This data enhances current knowledge on medin generation to propose that alterations in local environmental conditions, possibly through changes in glycosylation or other post-translational modifications are required to induce MfgE8 to unfold partially or fully: this would result in enhanced accessibility of the cleavage sites and therefore enable medin generation.
最近的研究表明,人类淀粉样蛋白medin与一系列血管疾病有关,包括主动脉瘤、血管性痴呆和阿尔茨海默病。随着年龄的增长,medin在脉管系统中积累,通过氧化应激和硝化应激导致内皮功能障碍,并诱导促炎激活。Medin是MfgE8的C2结构域的裂解产物。MfgE8产生medin的确切机制尚不清楚,同源C2结构域的晶体结构表明裂解位点被掩埋,medin的产生需要构象转变。分子动力学模拟可以探索广泛的构象,从小规模的键旋转到大规模的变化,如蛋白质折叠或配体结合。本研究采用全原子和粗粒度分子动力学模拟相结合的方法,以及CONCOORD和AlphaFold2生成的模型,来研究MfgE8的构象及其对medin裂解位点可及性的影响。模拟结果表明,MfgE8倾向于采用紧凑的构象,其中N端结构域内对细胞附着很重要的RGD基序与C端结构域内的medin区域靠近。这种紧凑结构的形成是由域间静电相互作用促进的,这些相互作用促进了稳定性,进而降低了medin区域特别是C端medin裂解位点的溶剂可及表面积。这些数据增强了目前关于medin生成的知识,提出可能需要通过糖基化或其他翻译后修饰的变化来改变局部环境条件,以诱导MfgE8部分或完全展开:这将导致裂解位点的可及性增强,从而使medin得以生成。