Jozwiak Mathieu, Teboul Jean-Louis
Service de Médecine Intensive Réanimation, CHU de Nice Hôpital Archet 1, 151 Route Saint Antoine de Ginestière, 06200, Nice, France.
UR2CA, Unité de Recherche Clinique Côte d'Azur, Université Côte d'Azur, 06200, Nice, France.
Ann Intensive Care. 2024 Aug 12;14(1):122. doi: 10.1186/s13613-024-01356-5.
Heart-lungs interactions are related to the interplay between the cardiovascular and the respiratory system. They result from the respiratory-induced changes in intrathoracic pressure, which are transmitted to the cardiac cavities and to the changes in alveolar pressure, which may impact the lung microvessels. In spontaneously breathing patients, consequences of heart-lungs interactions are during inspiration an increase in right ventricular preload and afterload, a decrease in left ventricular preload and an increase in left ventricular afterload. In mechanically ventilated patients, consequences of heart-lungs interactions are during mechanical insufflation a decrease in right ventricular preload, an increase in right ventricular afterload, an increase in left ventricular preload and a decrease in left ventricular afterload. Physiologically and during normal breathing, heart-lungs interactions do not lead to significant hemodynamic consequences. Nevertheless, in some clinical settings such as acute exacerbation of chronic obstructive pulmonary disease, acute left heart failure or acute respiratory distress syndrome, heart-lungs interactions may lead to significant hemodynamic consequences. These are linked to complex pathophysiological mechanisms, including a marked inspiratory negativity of intrathoracic pressure, a marked inspiratory increase in transpulmonary pressure and an increase in intra-abdominal pressure. The most recent application of heart-lungs interactions is the prediction of fluid responsiveness in mechanically ventilated patients. The first test to be developed using heart-lungs interactions was the respiratory variation of pulse pressure. Subsequently, many other dynamic fluid responsiveness tests using heart-lungs interactions have been developed, such as the respiratory variations of pulse contour-based stroke volume or the respiratory variations of the inferior or superior vena cava diameters. All these tests share the same limitations, the most frequent being low tidal volume ventilation, persistent spontaneous breathing activity and cardiac arrhythmia. Nevertheless, when their main limitations are properly addressed, all these tests can help intensivists in the decision-making process regarding fluid administration and fluid removal in critically ill patients.
心肺相互作用与心血管系统和呼吸系统之间的相互作用有关。它们源于呼吸引起的胸内压变化,这种变化会传递到心腔,以及肺泡压的变化,肺泡压变化可能会影响肺微血管。在自主呼吸的患者中,心肺相互作用的结果是在吸气时右心室前负荷和后负荷增加,左心室前负荷降低,左心室后负荷增加。在机械通气的患者中,心肺相互作用的结果是在机械通气时右心室前负荷降低,右心室后负荷增加,左心室前负荷增加,左心室后负荷降低。在生理状态下和正常呼吸过程中,心肺相互作用不会导致显著的血流动力学后果。然而,在一些临床情况下,如慢性阻塞性肺疾病急性加重、急性左心衰竭或急性呼吸窘迫综合征,心肺相互作用可能会导致显著的血流动力学后果。这些与复杂的病理生理机制有关,包括胸内压显著的吸气性负值、跨肺压显著的吸气性增加和腹内压增加。心肺相互作用的最新应用是预测机械通气患者的液体反应性。利用心肺相互作用开发的第一个测试是脉压的呼吸变化。随后,开发了许多其他利用心肺相互作用的动态液体反应性测试,如下降或上腔静脉直径的呼吸变化或基于脉搏轮廓的每搏量的呼吸变化。所有这些测试都有相同的局限性,最常见的是低潮气量通气、持续的自主呼吸活动和心律失常。然而,当正确解决其主要局限性时,所有这些测试都可以帮助重症监护医生在重症患者的液体管理和液体清除决策过程中做出决策。