Suppr超能文献

工程化 3D 仿生肽功能化聚乙二醇水凝胶模型共培养内皮细胞和星形胶质细胞:增强体外血脑屏障仿生特性。

Engineering a 3D Biomimetic Peptides Functionalized-Polyethylene Glycol Hydrogel Model Cocultured with Endothelial Cells and Astrocytes: Enhancing In Vitro Blood-Brain Barrier Biomimicry.

机构信息

Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon.

Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon.

出版信息

Mol Pharm. 2024 Sep 2;21(9):4664-4672. doi: 10.1021/acs.molpharmaceut.4c00599. Epub 2024 Aug 12.

Abstract

The blood-brain barrier (BBB) poses a significant challenge for drug delivery and is linked to various neurovascular disorders. In vitro BBB models provide a tool to investigate drug permeation across the BBB and the barrier's response to external injury events. Yet, existing models lack fidelity in replicating the BBB's complexity, hindering a comprehensive understanding of its functions. This study introduces a three-dimensional (3D) model using polyethylene glycol (PEG) hydrogels modified with biomimetic peptides that represent recognition sequences of key proteins in the brain. Hydrogels were functionalized with recognition sequences for laminin (IKVAV) and fibronectin peptides (RGD) and chemically cross-linked with matrix metalloprotease-sensitive peptides (MMPs) to mimic the extracellular matrix of the BBB. Astrocytes and endothelial cells were seeded within and on the surface of the hydrogels, respectively. The barrier integrity was assessed through different tests including transendothelial electrical resistance (TEER), the permeability of sodium fluorescence (Na-F), the permeability of Evan's blue bound to albumin (EBA), and the expression of zonula occluden-1 (ZO-1) in seeded endothelial cells. Hydrogels with a combination of RGD and IKVAV peptides displayed superior performance, exhibiting significantly higher TEER values (55.33 ± 1.47 Ω·cm) at day 5 compared to other 2D controls including HAECs-monoculture and HAECs-cocultured with NHAs seeded on well inserts and 3D controls including RGD hydrogel and RGD-IKVAV monoculture with HAECs and RGD hydrogel cocultured with HAECs and NHAs. The designed 3D system resulted in the lowest Evan's blue permeability at 120 min (0.215 ± 0.055 μg/mL) compared to controls. ZO-1 expression was significantly higher and formed a relatively larger network in the functionalized hydrogel cocultured with astrocytes and endothelial cells compared to the controls. Thus, the designed 3D model effectively recapitulates the main BBB structure and function in vitro and is expected to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.

摘要

血脑屏障(BBB)对药物输送构成重大挑战,与各种神经血管疾病有关。体外 BBB 模型提供了一种工具,可以研究药物穿过 BBB 的渗透情况以及屏障对外伤事件的反应。然而,现有的模型在复制 BBB 的复杂性方面缺乏保真度,阻碍了对其功能的全面理解。本研究介绍了一种使用聚乙二醇(PEG)水凝胶的三维(3D)模型,该水凝胶经过修饰,具有脑内关键蛋白识别序列的仿生肽。水凝胶被修饰为层粘连蛋白(IKVAV)和纤连蛋白肽(RGD)的识别序列,并通过基质金属蛋白酶敏感肽(MMPs)进行化学交联,以模拟 BBB 的细胞外基质。星形胶质细胞和内皮细胞分别接种在水凝胶内部和表面。通过不同的测试评估屏障的完整性,包括跨内皮电阻(TEER)、钠离子荧光(Na-F)通透性、与白蛋白结合的伊文思蓝(EBA)通透性以及接种内皮细胞中紧密连接蛋白-1(ZO-1)的表达。含有 RGD 和 IKVAV 肽的水凝胶表现出更好的性能,在第 5 天的 TEER 值(55.33±1.47 Ω·cm)明显高于其他 2D 对照物,包括 HAECs 单层培养物和接种在孔插入物上的 NHAs 与 HAECs 共培养物以及包括 RGD 水凝胶和 RGD-IKVAV 与 HAECs 共培养物和 RGD 水凝胶与 HAECs 和 NHAs 共培养物的 3D 对照物。设计的 3D 系统在 120 分钟时导致最低的伊文思蓝通透性(0.215±0.055 μg/mL)与对照物相比。与对照物相比,在与星形胶质细胞和内皮细胞共培养的功能化水凝胶中,ZO-1 的表达明显更高,形成相对较大的网络。因此,设计的 3D 模型有效地在体外再现了主要的 BBB 结构和功能,有望促进对病理性 CNS 血管生成和有效 CNS 药物开发的更深入理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ae/11372828/52736e031f72/mp4c00599_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验