Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA.
Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA.
Brain Behav Immun. 2024 Nov;122:95-109. doi: 10.1016/j.bbi.2024.08.010. Epub 2024 Aug 10.
Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early-life adversity (ELA), with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of ELA, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the rodent hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21 in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. These findings suggest a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, our study highlights a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of ELA.
海马体的异常发育和功能是在经历早期生活逆境(ELA)的人类和啮齿动物中最一致的发现之一,男性通常比女性受影响更大。使用有限垫料(LB)范式作为 ELA 的啮齿动物模型,我们发现,暴露于 LB 的雄性青春期小鼠在情景性恐惧条件反射和海马突触连接方面表现出明显缺陷,而雌性小鼠则没有观察到这些缺陷。这与连接的发育性细化改变有关,LB 严重损害了雄性和雌性幼鼠在出生后第 17 天(P17)的海马中的微胶质细胞介导的突触修剪,但在青春期 P33 小鼠中则没有观察到这种情况,因为此时微胶质细胞吞噬突触的水平大大降低。由于啮齿动物海马体在生命的第二和第三周经历强烈的突触修剪,我们研究了微胶质细胞是否是青春期 LB 小鼠观察到的突触和行为异常所必需的。事实上,在正常发育的小鼠中从 P13-21 短暂消融微胶质细胞会导致类似青春期 LB 小鼠观察到的行为和突触异常,具有性别特异性。此外,在同一时期化学遗传激活微胶质细胞可逆转 P17 时的微胶质细胞吞噬缺陷,并恢复青春期 LB 雄性小鼠的正常情景性恐惧条件反射和突触连接。我们的数据支持微胶质细胞在 LB 的性别特异性效应中的额外作用,LB 雌性幼鼠海马体中的膜受体 MEGF10 表达增加和增强的突触吞噬作用,但在 LB 雄性同窝仔鼠中则没有观察到这种情况。这些发现表明,这可能是 LB 雌性相对恢复力的潜在补偿机制。总的来说,我们的研究强调了胶质细胞在介导 ELA 啮齿动物模型中海马体性别特异性缺陷方面的新作用。