Xi Yilian, Shi Zhijian, Zhao Mengting, Cheng Ningyan, Du Kunrong, Li Keren, Xu Hang, Xu Shengjie, Liu Jiaqi, Feng Haifeng, Shi Yan, Xu Xun, Hao Weichang, Dou Shixue, Du Yi
School of Physics, Beihang University, Beijing 100191, China.
ARC Centre for Future Low Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia.
ACS Nano. 2024 Aug 27;18(34):22958-22964. doi: 10.1021/acsnano.4c04271. Epub 2024 Aug 13.
Artificial two-dimensional (2D) moiré superlattices provide a platform for generating exotic quantum matter or phenomena. Here, an epitaxial heterostructure composed of bilayer Bi(111) and an FeGeTe substrate with a zero-twist angle is acquired by molecular beam epitaxy. Scanning tunneling microscopy and spectroscopy studies reveal the spatially tailored Kondo resonance and interfacial magnetism within this moiré superlattice. Combined with first-principles calculations, it is found that the modulation effect of the moiré superlattice originates from the interfacial orbital hybridization between Bi and Fe atoms. Our work provides a tunable platform for strong electron correlation studies to explore 2D artificial heavy Fermion systems and interface magnetism.
人工二维(2D)莫尔超晶格为产生奇异量子物质或现象提供了一个平台。在此,通过分子束外延获得了由双层Bi(111)和具有零扭转角的FeGeTe衬底组成的外延异质结构。扫描隧道显微镜和光谱研究揭示了该莫尔超晶格内空间定制的近藤共振和界面磁性。结合第一性原理计算,发现莫尔超晶格的调制效应源于Bi和Fe原子之间的界面轨道杂化。我们的工作为强电子关联研究提供了一个可调平台,以探索二维人工重费米子系统和界面磁性。