Department of Applied Physics, Aalto University, Espoo, Finland.
Department of Physics, Department of Chemistry and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
Nature. 2021 Nov;599(7886):582-586. doi: 10.1038/s41586-021-04021-0. Epub 2021 Nov 24.
Heavy-fermion systems represent one of the paradigmatic strongly correlated states of matter. They have been used as a platform for investigating exotic behaviour ranging from quantum criticality and non-Fermi liquid behaviour to unconventional topological superconductivity. The heavy-fermion phenomenon arises from the exchange interaction between localized magnetic moments and conduction electrons leading to Kondo lattice physics, and represents one of the long-standing open problems in quantum materials. In a Kondo lattice, the exchange interaction gives rise to a band with heavy effective mass. This intriguing phenomenology has so far been realized only in compounds containing rare-earth elements with 4f or 5f electrons. Here we realize a designer van der Waals heterostructure where artificial heavy fermions emerge from the Kondo coupling between a lattice of localized magnetic moments and itinerant electrons in a 1T/1H-TaS heterostructure. We study the heterostructure using scanning tunnelling microscopy and spectroscopy and show that depending on the stacking order of the monolayers, we can reveal either the localized magnetic moments and the associated Kondo effect, or the conduction electrons with a heavy-fermion hybridization gap. Our experiments realize an ultimately tunable platform for future experiments probing enhanced many-body correlations, dimensional tuning of quantum criticality and unconventional superconductivity in two-dimensional artificial heavy-fermion systems.
重费米子体系代表了物质的一种典型强关联状态。它们被用来研究从量子临界点和非费米液体行为到非常规拓扑超导的奇异行为。重费米子现象源于局域磁矩和传导电子之间的交换相互作用,导致了近藤晶格物理学,这是量子材料中长期存在的开放性问题之一。在近藤晶格中,交换相互作用导致了具有重有效质量的能带。到目前为止,这种引人入胜的现象仅在含有 4f 或 5f 电子的稀土元素化合物中得到了实现。在这里,我们实现了一种设计好的范德华异质结构,其中人工重费米子是由局域磁矩晶格和 1T/1H-TaS 异质结构中的巡游电子之间的近藤耦合产生的。我们使用扫描隧道显微镜和光谱学研究了该异质结构,并表明,根据单层的堆叠顺序,我们可以揭示局域磁矩和相关的近藤效应,或者具有重费米子杂化间隙的传导电子。我们的实验实现了一个最终可调节的平台,用于未来探测二维人工重费米子系统中增强的多体相关性、量子临界点的维度调节和非常规超导性的实验。