Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway.
Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
J Neurosci. 2024 Sep 18;44(38):e0040242024. doi: 10.1523/JNEUROSCI.0040-24.2024.
Navigation requires integrating sensory information with a stable schema to create a dynamic map of an animal's position using egocentric and allocentric coordinate systems. In the hippocampus, place cells encode allocentric space, but their firing rates may also exhibit directional tuning within egocentric or allocentric reference frames. We compared experimental and simulated data to assess the prevalence of tuning to egocentric bearing (EB) among hippocampal cells in rats foraging in an open field. Using established procedures, we confirmed egocentric modulation of place cell activity in recorded data; however, simulated data revealed a high false-positive rate (FPR). When we accounted for false positives by comparing with shuffled data that retain correlations between the animal's direction and position, only a very low number of hippocampal neurons appeared modulated by EB. Our study highlights biases affecting FPRs and provides insights into the challenges of identifying egocentric modulation in hippocampal neurons.
导航需要将感觉信息与稳定的图式相结合,以使用自我中心和以物体为中心的坐标系创建动物位置的动态地图。在海马体中,位置细胞对以物体为中心的空间进行编码,但它们的发射率也可能在自我中心或以物体为中心的参考框架内表现出方向调谐。我们比较了实验和模拟数据,以评估在大鼠在开阔场觅食时,海马体细胞对自我中心方位(EB)的调谐的普遍性。使用既定程序,我们在记录的数据中证实了对位置细胞活动的自我中心调节;然而,模拟数据显示出高的假阳性率(FPR)。当我们通过与保留动物方向和位置之间相关性的随机数据进行比较来考虑假阳性时,只有极少数海马神经元似乎受到 EB 的调节。我们的研究强调了影响 FPR 的偏差,并为识别海马神经元的自我中心调节提供了见解。