文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能助力年龄相关性黄斑变性的临床试验招募

Artificial Intelligence to Facilitate Clinical Trial Recruitment in Age-Related Macular Degeneration.

作者信息

Williamson Dominic J, Struyven Robbert R, Antaki Fares, Chia Mark A, Wagner Siegfried K, Jhingan Mahima, Wu Zhichao, Guymer Robyn, Skene Simon S, Tammuz Naaman, Thomson Blaise, Chopra Reena, Keane Pearse A

机构信息

NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK.

Centre for Medical Image Computing, University College London, London, UK.

出版信息

Ophthalmol Sci. 2024 Jun 19;4(6):100566. doi: 10.1016/j.xops.2024.100566. eCollection 2024 Nov-Dec.


DOI:10.1016/j.xops.2024.100566
PMID:39139546
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11321286/
Abstract

OBJECTIVE: Recent developments in artificial intelligence (AI) have positioned it to transform several stages of the clinical trial process. In this study, we explore the role of AI in clinical trial recruitment of individuals with geographic atrophy (GA), an advanced stage of age-related macular degeneration, amidst numerous ongoing clinical trials for this condition. DESIGN: Cross-sectional study. SUBJECTS: Retrospective dataset from the INSIGHT Health Data Research Hub at Moorfields Eye Hospital in London, United Kingdom, including 306 651 patients (602 826 eyes) with suspected retinal disease who underwent OCT imaging between January 1, 2008 and April 10, 2023. METHODS: A deep learning model was trained on OCT scans to identify patients potentially eligible for GA trials, using AI-generated segmentations of retinal tissue. This method's efficacy was compared against a traditional keyword-based electronic health record (EHR) search. A clinical validation with fundus autofluorescence (FAF) images was performed to calculate the positive predictive value of this approach, by comparing AI predictions with expert assessments. MAIN OUTCOME MEASURES: The primary outcomes included the positive predictive value of AI in identifying trial-eligible patients, and the secondary outcome was the intraclass correlation between GA areas segmented on FAF by experts and AI-segmented OCT scans. RESULTS: The AI system shortlisted a larger number of eligible patients with greater precision (1139, positive predictive value: 63%; 95% confidence interval [CI]: 54%-71%) compared with the EHR search (693, positive predictive value: 40%; 95% CI: 39%-42%). A combined AI-EHR approach identified 604 eligible patients with a positive predictive value of 86% (95% CI: 79%-92%). Intraclass correlation of GA area segmented on FAF versus AI-segmented area on OCT was 0.77 (95% CI: 0.68-0.84) for cases meeting trial criteria. The AI also adjusts to the distinct imaging criteria from several clinical trials, generating tailored shortlists ranging from 438 to 1817 patients. CONCLUSIONS: This study demonstrates the potential for AI in facilitating automated prescreening for clinical trials in GA, enabling site feasibility assessments, data-driven protocol design, and cost reduction. Once treatments are available, similar AI systems could also be used to identify individuals who may benefit from treatment. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的:人工智能(AI)的最新发展使其有能力改变临床试验过程的多个阶段。在本研究中,我们探讨了在针对年龄相关性黄斑变性晚期——地理萎缩(GA)的众多正在进行的临床试验中,AI在GA患者临床试验招募中的作用。 设计:横断面研究。 研究对象:来自英国伦敦穆尔菲尔兹眼科医院INSIGHT健康数据研究中心的回顾性数据集,包括2008年1月1日至2023年4月10日期间接受光学相干断层扫描(OCT)成像的306651例疑似视网膜疾病患者(602826只眼)。 方法:使用AI生成的视网膜组织分割图,在OCT扫描上训练深度学习模型,以识别可能符合GA试验条件的患者。将该方法的疗效与基于传统关键词的电子健康记录(EHR)搜索进行比较。通过将AI预测结果与专家评估结果进行比较,使用眼底自发荧光(FAF)图像进行临床验证,以计算该方法的阳性预测值。 主要观察指标:主要观察指标包括AI识别符合试验条件患者的阳性预测值,次要观察指标是专家在FAF上分割的GA区域与AI分割的OCT扫描区域之间的组内相关性。 结果:与EHR搜索(693例,阳性预测值:40%;95%置信区间[CI]:39%-42%)相比,AI系统筛选出了更多符合条件且精度更高的患者(1139例,阳性预测值:63%;95%CI:54%-71%)。AI-EHR联合方法识别出604例符合条件的患者,阳性预测值为86%(95%CI:79%-92%)。对于符合试验标准的病例,FAF上分割的GA区域与OCT上AI分割区域的组内相关性为0.77(95%CI:0.68-0.84)。AI还能根据多个临床试验的不同成像标准进行调整,生成438至1817例患者的定制候选名单。 结论:本研究证明了AI在促进GA临床试验自动预筛选、实现研究点可行性评估、数据驱动的方案设计及降低成本方面的潜力。一旦有了治疗方法,类似的AI系统也可用于识别可能从治疗中受益的个体。 财务披露:专有或商业披露信息可在本文末尾的脚注和披露部分中找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d852/11321286/79cfdbf3e353/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d852/11321286/f6e4b9dc3848/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d852/11321286/e74271c8655c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d852/11321286/79cfdbf3e353/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d852/11321286/f6e4b9dc3848/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d852/11321286/e74271c8655c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d852/11321286/79cfdbf3e353/gr3.jpg

相似文献

[1]
Artificial Intelligence to Facilitate Clinical Trial Recruitment in Age-Related Macular Degeneration.

Ophthalmol Sci. 2024-6-19

[2]
A Novel Management Challenge in Age-Related Macular Degeneration: Artificial Intelligence and Expert Prediction of Geographic Atrophy.

Ophthalmol Retina. 2025-5

[3]
Deep Learning to Predict the Future Growth of Geographic Atrophy from Fundus Autofluorescence.

Ophthalmol Sci. 2024-10-23

[4]
Strong versus Weak Data Labeling for Artificial Intelligence Algorithms in the Measurement of Geographic Atrophy.

Ophthalmol Sci. 2024-1-26

[5]
Deep Learning-Based Prediction of Individual Geographic Atrophy Progression from a Single Baseline OCT.

Ophthalmol Sci. 2024-1-17

[6]
Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.

Lancet Digit Health. 2021-10

[7]
Comparison of Blue-Light Autofluorescence and Ultrawidefield Green-Light Autofluorescence for Assessing Geographic Atrophy.

Ophthalmol Retina. 2024-10

[8]
Deep Learning Approaches for Detecting of Nascent Geographic Atrophy in Age-Related Macular Degeneration.

Ophthalmol Sci. 2023-11-17

[9]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[10]
Correlation between Fundus Autofluorescence and En Face OCT Measurements of Geographic Atrophy.

Ophthalmol Retina. 2022-8

引用本文的文献

[1]
Artificial intelligence in ophthalmology: a bibliometric analysis of the 5-year trends in literature.

Front Med (Lausanne). 2025-7-1

[2]
Rethinking Clinical Trials in Age-Related Macular Degeneration: How AI-Based OCT Analysis Can Support Successful Outcomes.

Pharmaceuticals (Basel). 2025-2-20

[3]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

本文引用的文献

[1]
The effect of complement C3 or C5 inhibition on geographic atrophy secondary to age-related macular degeneration: A living systematic review and meta-analysis.

Surv Ophthalmol. 2024

[2]
The Future of Clinical Trials: Artificial to Augmented to Applied Intelligence.

JAMA. 2023-12-5

[3]
Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials.

Lancet. 2023-10-21

[4]
Complement inhibitors for the treatment of geographic atrophy.

Lancet. 2023-10-21

[5]
Geographic Atrophy Management Consensus (GA-MAC): a Delphi panel study on identification, diagnosis and treatment.

BMJ Open Ophthalmol. 2023-10

[6]
Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial.

Lancet. 2023-10-21

[7]
COMPLEMENT INHIBITION FOR GEOGRAPHIC ATROPHY: Review of Salient Functional Outcomes and Perspective.

Retina. 2023-7-1

[8]
Avacincaptad pegol for geographic atrophy secondary to age-related macular degeneration: 18-month findings from the GATHER1 trial.

Eye (Lond). 2023-12

[9]
What Is a Preferred Retinal Locus?

Annu Rev Vis Sci. 2023-9-15

[10]
Emerging Treatment Options for Geographic Atrophy (GA) Secondary to Age-Related Macular Degeneration.

Clin Ophthalmol. 2023-1-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索