Suppr超能文献

统计无偏预测可实现电压成像数据的精确去噪。

Statistically unbiased prediction enables accurate denoising of voltage imaging data.

机构信息

School of Electrical Engineering, KAIST, Daejeon, Republic of Korea.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

出版信息

Nat Methods. 2023 Oct;20(10):1581-1592. doi: 10.1038/s41592-023-02005-8. Epub 2023 Sep 18.

Abstract

Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.

摘要

我们在此报告 SUPPORT(利用成像数据中的时空信息进行无偏统计预测),这是一种用于去除电压成像数据中泊松-高斯噪声的自监督学习方法。SUPPORT 的基础是这样一种见解,即即使其时间相邻帧本身不能为统计预测提供有用信息,电压成像数据中的一个像素值也高度依赖于其时空相邻像素。这种依赖性可以通过一个具有时空盲点的卷积神经网络来捕捉和利用,从而准确地对电压成像数据进行去噪,在这种数据中,无法通过其他帧中的信息推断出一个时间帧中动作电位的存在。通过模拟和实验,我们表明,SUPPORT 能够在保留场景内潜在动力学的同时,精确地对电压成像数据和其他类型的显微镜图像进行去噪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1288/10555843/37cd39389ba8/41592_2023_2005_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验