From the Departments of Biomedical Engineering (Y.R.), Bioinformatics (X.X.), Radiology (D.L.N., J.Y.L., L.J.G.), and Electrical and Computer Engineering and Biomedical Engineering (J.Y.L.), Duke University, 2424 Erwin Rd, Studio #302, Durham, NC 27705; and iCAD Inc, Nashua, NH (Y.R., Z.L., J. Ge, J. Go).
Radiol Artif Intell. 2024 Sep;6(5):e230391. doi: 10.1148/ryai.230391.
Purpose To develop a deep learning algorithm that uses temporal information to improve the performance of a previously published framework of cancer lesion detection for digital breast tomosynthesis. Materials and Methods This retrospective study analyzed the current and the 1-year-prior Hologic digital breast tomosynthesis screening examinations from eight different institutions between 2016 and 2020. The dataset contained 973 cancer and 7123 noncancer cases. The front end of this algorithm was an existing deep learning framework that performed single-view lesion detection followed by ipsilateral view matching. For this study, PriorNet was implemented as a cascaded deep learning module that used the additional growth information to refine the final probability of malignancy. Data from seven of the eight sites were used for training and validation, while the eighth site was reserved for external testing. Model performance was evaluated using localization receiver operating characteristic curves. Results On the validation set, PriorNet showed an area under the receiver operating characteristic curve (AUC) of 0.931 (95% CI: 0.930, 0.931), which outperformed both baseline models using single-view detection (AUC, 0.892 [95% CI: 0.891, 0.892]; < .001) and ipsilateral matching (AUC, 0.915 [95% CI: 0.914, 0.915]; < .001). On the external test set, PriorNet achieved an AUC of 0.896 (95% CI: 0.885, 0.896), outperforming both baselines (AUC, 0.846 [95% CI: 0.846, 0.847]; < .001 and AUC, 0.865 [95% CI: 0.865, 0.866]; < .001, respectively). In the high sensitivity range of 0.9 to 1.0, the partial AUC of PriorNet was significantly higher ( < .001) relative to both baselines. Conclusion PriorNet using temporal information further improved the breast cancer detection performance of an existing digital breast tomosynthesis cancer detection framework. Digital Breast Tomosynthesis, Computer-aided Detection, Breast Cancer, Deep Learning © RSNA, 2024 See also commentary by Lee in this issue.
目的 开发一种深度学习算法,利用时间信息来提高先前发表的用于数字乳腺断层合成术的癌症病变检测框架的性能。
材料与方法 本回顾性研究分析了 2016 年至 2020 年期间来自 8 个不同机构的当前和前一年的 Hologic 数字乳腺断层合成术筛查检查。数据集包含 973 例癌症和 7123 例非癌症病例。该算法的前端是一个现有的深度学习框架,用于执行单视图病变检测,然后进行同侧视图匹配。在这项研究中,PriorNet 被实现为一个级联深度学习模块,该模块使用额外的生长信息来细化最终的恶性肿瘤概率。来自 8 个站点中的 7 个站点的数据用于培训和验证,而第 8 个站点则用于外部测试。使用定位接收器工作特征曲线评估模型性能。
结果 在验证集上,PriorNet 的接收器工作特征曲线下面积(AUC)为 0.931(95%CI:0.930,0.931),优于使用单视图检测的基线模型(AUC,0.892[95%CI:0.891,0.892];<0.001)和同侧匹配(AUC,0.915[95%CI:0.914,0.915];<0.001)。在外部测试集中,PriorNet 的 AUC 为 0.896(95%CI:0.885,0.896),优于两个基线(AUC,0.846[95%CI:0.846,0.847];<0.001 和 AUC,0.865[95%CI:0.865,0.866];<0.001,分别)。在 0.9 到 1.0 的高灵敏度范围内,PriorNet 的部分 AUC 显著高于两个基线(<0.001)。
结论 使用时间信息的 PriorNet 进一步提高了现有的数字乳腺断层合成术癌症检测框架的乳腺癌检测性能。
数字乳腺断层合成术,计算机辅助检测,乳腺癌,深度学习
©RSNA,2024 本期还包含 Lee 的评论。