Suppr超能文献

断层合成术中同侧病变检测的细化。

Ipsilateral Lesion Detection Refinement for Tomosynthesis.

出版信息

IEEE Trans Med Imaging. 2023 Oct;42(10):3080-3090. doi: 10.1109/TMI.2023.3280135. Epub 2023 Oct 2.

Abstract

Computer-aided detection (CAD) frameworks for breast cancer screening have been researched for several decades. Early adoption of deep-learning models in CAD frameworks has shown greatly improved detection performance compared to traditional CAD on single-view images. Recently, studies have improved performance by merging information from multiple views within each screening exam. Clinically, the integration of lesion correspondence during screening is a complicated decision process that depends on the correct execution of several referencing steps. However, most multi-view CAD frameworks are deep-learning-based black-box techniques. Fully end-to-end designs make it very difficult to analyze model behaviors and fine-tune performance. More importantly, the black-box nature of the techniques discourages clinical adoption due to the lack of explicit reasoning for each multi-view referencing step. Therefore, there is a need for a multi-view detection framework that can not only detect cancers accurately but also provide step-by-step, multi-view reasoning. In this work, we present Ipsilateral-Matching-Refinement Networks (IMR-Net) for digital breast tomosynthesis (DBT) lesion detection across multiple views. Our proposed framework adaptively refines the single-view detection scores based on explicit ipsilateral lesion matching. IMR-Net is built on a robust, single-view detection CAD pipeline with a commercial development DBT dataset of 24675 DBT volumetric views from 8034 exams. Performance is measured using location-based, case-level receiver operating characteristic (ROC) and case-level free-response ROC (FROC) analysis.

摘要

几十年来,人们一直在研究用于乳腺癌筛查的计算机辅助检测 (CAD) 框架。与传统 CAD 相比,基于深度学习的模型在单视图图像上的检测性能有了显著提高,这是早期在 CAD 框架中采用深度学习模型的结果。最近,研究人员通过合并每个筛查检查中多个视图的信息来提高性能。在临床上,病变对应关系的整合是一个复杂的决策过程,取决于几个参考步骤的正确执行。然而,大多数多视图 CAD 框架都是基于深度学习的黑盒技术。全端到端设计使得分析模型行为和调整性能变得非常困难。更重要的是,由于缺乏每个多视图参考步骤的明确推理,这些技术的黑盒性质阻碍了临床应用。因此,需要一种不仅可以准确检测癌症,还可以提供逐步、多视图推理的多视图检测框架。在这项工作中,我们提出了用于数字乳腺断层合成术 (DBT) 多视图病变检测的同侧匹配细化网络 (IMR-Net)。我们提出的框架基于明确的同侧病变匹配自适应地细化单视图检测得分。IMR-Net 建立在一个稳健的单视图检测 CAD 管道上,该管道使用了来自 8034 次检查的 24675 个 DBT 容积视图的商业开发 DBT 数据集。性能使用基于位置的、病例级别的接收者操作特性 (ROC) 和病例级别的自由响应 ROC (FROC) 分析进行衡量。

相似文献

1
Ipsilateral Lesion Detection Refinement for Tomosynthesis.
IEEE Trans Med Imaging. 2023 Oct;42(10):3080-3090. doi: 10.1109/TMI.2023.3280135. Epub 2023 Oct 2.
4
Improving Computer-aided Detection for Digital Breast Tomosynthesis by Incorporating Temporal Change.
Radiol Artif Intell. 2024 Sep;6(5):e230391. doi: 10.1148/ryai.230391.
5
Computer-aided mass detection based on ipsilateral multiview mammograms.
Acad Radiol. 2007 May;14(5):530-8. doi: 10.1016/j.acra.2007.01.012.
6
Developing breast lesion detection algorithms for digital breast tomosynthesis: Leveraging false positive findings.
Med Phys. 2022 Dec;49(12):7596-7608. doi: 10.1002/mp.15883. Epub 2022 Aug 19.
7
Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning.
Comput Biol Med. 2018 May 1;96:283-293. doi: 10.1016/j.compbiomed.2018.04.004. Epub 2018 Apr 12.
10
Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network.
Methods. 2019 Aug 15;166:103-111. doi: 10.1016/j.ymeth.2019.02.010. Epub 2019 Feb 13.

引用本文的文献

1
Deep Learning in Digital Breast Tomosynthesis: Current Status, Challenges, and Future Trends.
MedComm (2020). 2025 Jun 9;6(6):e70247. doi: 10.1002/mco2.70247. eCollection 2025 Jun.
2
Integrating Clinical Workflow for Breast Cancer Screening with AI.
Radiol Artif Intell. 2024 Sep;6(5):e240532. doi: 10.1148/ryai.240532.
3
Improving Computer-aided Detection for Digital Breast Tomosynthesis by Incorporating Temporal Change.
Radiol Artif Intell. 2024 Sep;6(5):e230391. doi: 10.1148/ryai.230391.
4
Use of artificial intelligence in breast surgery: a narrative review.
Gland Surg. 2024 Mar 27;13(3):395-411. doi: 10.21037/gs-23-414. Epub 2024 Mar 22.

本文引用的文献

1
SimCVD: Simple Contrastive Voxel-Wise Representation Distillation for Semi-Supervised Medical Image Segmentation.
IEEE Trans Med Imaging. 2022 Sep;41(9):2228-2237. doi: 10.1109/TMI.2022.3161829. Epub 2022 Aug 31.
2
Artificial Intelligence for Reducing Workload in Breast Cancer Screening with Digital Breast Tomosynthesis.
Radiology. 2022 Apr;303(1):69-77. doi: 10.1148/radiol.211105. Epub 2022 Jan 18.
3
MommiNet-v2: Mammographic multi-view mass identification networks.
Med Image Anal. 2021 Oct;73:102204. doi: 10.1016/j.media.2021.102204. Epub 2021 Aug 2.
7
Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study.
Lancet Digit Health. 2020 Mar;2(3):e138-e148. doi: 10.1016/S2589-7500(20)30003-0. Epub 2020 Feb 6.
9
Deep Learning in Medical Image Analysis.
Adv Exp Med Biol. 2020;1213:3-21. doi: 10.1007/978-3-030-33128-3_1.
10
International evaluation of an AI system for breast cancer screening.
Nature. 2020 Jan;577(7788):89-94. doi: 10.1038/s41586-019-1799-6. Epub 2020 Jan 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验