Suppr超能文献

HLTF 解决 G4s 并促进 G4 诱导的复制叉减速以维持基因组稳定性。

HLTF resolves G4s and promotes G4-induced replication fork slowing to maintain genome stability.

机构信息

Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA.

Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland.

出版信息

Mol Cell. 2024 Aug 22;84(16):3044-3060.e11. doi: 10.1016/j.molcel.2024.07.018. Epub 2024 Aug 13.

Abstract

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.

摘要

四链体(G4s)在整个基因组中形成,并影响重要的细胞过程。它们的失调会挑战 DNA 复制叉的进展,并威胁基因组的稳定性。在这里,我们展示了双链 DNA(dsDNA)易位酶解旋酶样转录因子(HLTF)在应对 G4s 方面的意外作用。我们表明,HLTF 在人类基因组中的 G4s 中富集,能够在体外直接展开 G4s,并利用这种依赖 ATP 的易位功能抑制整个细胞周期中 G4 的积累。此外,MSH2(与 G4 结合的 MutS 异二聚体的一个组成部分)和 HLTF 协同作用以抑制 G4 的积累,限制端粒的替代性延长,并促进对 G4 稳定药物的抗性。HLTF 以一种离散但互补的作用发挥作用,当 G4s 通过抑制引物酶-聚合酶(PrimPol)依赖性重新引发而稳定时,它会抑制 DNA 合成。HLTF 在 G4 反应中的这些不同作用共同防止 DNA 损伤和潜在的诱变复制,以保护基因组的稳定性。

相似文献

1
HLTF resolves G4s and promotes G4-induced replication fork slowing to maintain genome stability.
Mol Cell. 2024 Aug 22;84(16):3044-3060.e11. doi: 10.1016/j.molcel.2024.07.018. Epub 2024 Aug 13.
2
HLTF Prevents G4 Accumulation and Promotes G4-induced Fork Slowing to Maintain Genome Stability.
bioRxiv. 2023 Oct 27:2023.10.27.563641. doi: 10.1101/2023.10.27.563641.
4
The levels of p53 govern the hierarchy of DNA damage tolerance pathway usage.
Nucleic Acids Res. 2024 Apr 24;52(7):3740-3760. doi: 10.1093/nar/gkae061.
5
HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis.
Mol Cell. 2020 Jun 18;78(6):1237-1251.e7. doi: 10.1016/j.molcel.2020.04.031. Epub 2020 May 21.
6
PrimPol Is Required for Replicative Tolerance of G Quadruplexes in Vertebrate Cells.
Mol Cell. 2016 Jan 7;61(1):161-9. doi: 10.1016/j.molcel.2015.10.038. Epub 2015 Nov 25.
7
PRIMPOL competes with RAD51 to resolve G-quadruplex-induced replication stress via its interaction with RPA.
Acta Biochim Biophys Sin (Shanghai). 2022 Nov 25;55(3):498-507. doi: 10.3724/abbs.2022165.
9
10
PrimPol-mediated repriming elicits gap-filling by template switching and promotes cellular tolerance to cidofovir.
DNA Repair (Amst). 2025 Jan;145:103787. doi: 10.1016/j.dnarep.2024.103787. Epub 2024 Nov 14.

引用本文的文献

1
2
Atypical R-loops in cancer: decoding molecular chaos for therapeutic gain.
J Transl Med. 2025 Aug 14;23(1):912. doi: 10.1186/s12967-025-06929-x.
3
The SWI/SNF-related protein SMARCA3 is a histone H3K23 ubiquitin ligase that regulates H3K9me3 in cancer.
Mol Cell. 2025 Aug 7;85(15):2885-2899.e8. doi: 10.1016/j.molcel.2025.06.020. Epub 2025 Jul 17.
4
TRF1 relies on fork reversal to prevent fragility at human telomeres.
Nat Commun. 2025 Jul 11;16(1):6439. doi: 10.1038/s41467-025-61828-5.

本文引用的文献

1
HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing.
Nat Commun. 2024 Jul 10;15(1):5789. doi: 10.1038/s41467-024-50080-y.
2
MutSβ-MutLβ-FANCJ axis mediates the restart of DNA replication after fork stalling at cotranscriptional G4/R-loops.
Sci Adv. 2024 Feb 9;10(6):eadk2685. doi: 10.1126/sciadv.adk2685. Epub 2024 Feb 7.
3
SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion.
Cell. 2024 Feb 15;187(4):861-881.e32. doi: 10.1016/j.cell.2024.01.008. Epub 2024 Jan 31.
4
Replication-induced DNA secondary structures drive fork uncoupling and breakage.
EMBO J. 2023 Nov 15;42(22):e114334. doi: 10.15252/embj.2023114334. Epub 2023 Oct 2.
5
G-quadruplex resolution: From molecular mechanisms to physiological relevance.
DNA Repair (Amst). 2023 Oct;130:103552. doi: 10.1016/j.dnarep.2023.103552. Epub 2023 Aug 3.
7
Co-transcriptional genome surveillance by HUSH is coupled to termination machinery.
Mol Cell. 2023 May 18;83(10):1623-1639.e8. doi: 10.1016/j.molcel.2023.04.014. Epub 2023 May 9.
8
WRN helicase and mismatch repair complexes independently and synergistically disrupt cruciform DNA structures.
EMBO J. 2023 Feb 1;42(3):e111998. doi: 10.15252/embj.2022111998. Epub 2022 Dec 21.
9
Branchpoint translocation by fork remodelers as a general mechanism of R-loop removal.
Cell Rep. 2022 Dec 6;41(10):111749. doi: 10.1016/j.celrep.2022.111749.
10
Dynamic alternative DNA structures in biology and disease.
Nat Rev Genet. 2023 Apr;24(4):211-234. doi: 10.1038/s41576-022-00539-9. Epub 2022 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验