Yang Haojun, Zingaro Vincenzo Andrea, Lincoff James, Tom Harrison, Oikawa Satoshi, Oses-Prieto Juan A, Edmondson Quinn, Seiple Ian, Shah Hardik, Kajimura Shingo, Burlingame Alma L, Grabe Michael, Ruggero Davide
Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA.
School of Medicine and Department of Urology, UCSF, San Francisco, CA, USA.
Nature. 2024 Sep;633(8028):189-197. doi: 10.1038/s41586-024-07781-7. Epub 2024 Aug 14.
Fasting is associated with a range of health benefits. How fasting signals elicit changes in the proteome to establish metabolic programmes remains poorly understood. Here we show that hepatocytes selectively remodel the translatome while global translation is paradoxically downregulated during fasting. We discover that phosphorylation of eukaryotic translation initiation factor 4E (P-eIF4E) is induced during fasting. We show that P-eIF4E is responsible for controlling the translation of genes involved in lipid catabolism and the production of ketone bodies. Inhibiting P-eIF4E impairs ketogenesis in response to fasting and a ketogenic diet. P-eIF4E regulates those messenger RNAs through a specific translation regulatory element within their 5' untranslated regions (5' UTRs). Our findings reveal a new signalling property of fatty acids, which are elevated during fasting. We found that fatty acids bind and induce AMP-activated protein kinase (AMPK) kinase activity that in turn enhances the phosphorylation of MAP kinase-interacting protein kinase (MNK), the kinase that phosphorylates eIF4E. The AMPK-MNK-eIF4E axis controls ketogenesis, revealing a new lipid-mediated kinase signalling pathway that links ketogenesis to translation control. Certain types of cancer use ketone bodies as an energy source that may rely on P-eIF4E. Our findings reveal that on a ketogenic diet, treatment with eFT508 (also known as tomivosertib; a P-eIF4E inhibitor) restrains pancreatic tumour growth. Thus, our findings unveil a new fatty acid-induced signalling pathway that activates selective translation, which underlies ketogenesis and provides a tailored diet intervention therapy for cancer.
禁食与一系列健康益处相关。禁食信号如何引发蛋白质组变化以建立代谢程序仍知之甚少。在这里,我们表明,在禁食期间,虽然整体翻译反而下调,但肝细胞会选择性地重塑翻译组。我们发现,禁食期间真核翻译起始因子4E(P-eIF4E)的磷酸化被诱导。我们表明,P-eIF4E负责控制参与脂质分解代谢和酮体生成的基因的翻译。抑制P-eIF4E会损害对禁食和生酮饮食的生酮反应。P-eIF4E通过其5'非翻译区(5'UTR)内的特定翻译调控元件来调节这些信使RNA。我们的研究结果揭示了禁食期间升高的脂肪酸的一种新的信号特性。我们发现,脂肪酸结合并诱导AMP激活的蛋白激酶(AMPK)激酶活性,进而增强丝裂原活化蛋白激酶相互作用蛋白激酶(MNK)的磷酸化,MNK是使eIF4E磷酸化的激酶。AMPK-MNK-eIF4E轴控制生酮作用,揭示了一条新的脂质介导的激酶信号通路,该通路将生酮作用与翻译控制联系起来。某些类型的癌症将酮体用作能量来源,这可能依赖于P-eIF4E。我们的研究结果表明,在生酮饮食中,用eFT508(也称为托米沃塞替布;一种P-eIF4E抑制剂)治疗可抑制胰腺肿瘤生长。因此,我们的研究结果揭示了一种新的脂肪酸诱导的信号通路,该通路激活选择性翻译,这是生酮作用的基础,并为癌症提供了一种量身定制的饮食干预疗法。