Suppr超能文献

阿尔茨海默病相关 lncRNA 群落的整体分析揭示了功能分离簇内增强的 lncRNA-miRNA-RBP 调控三链体形成。

A Holistic Analysis of Alzheimer's Disease-Associated lncRNA Communities Reveals Enhanced lncRNA-miRNA-RBP Regulatory Triad Formation Within Functionally Segregated Clusters.

机构信息

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, India.

出版信息

J Mol Neurosci. 2024 Aug 15;74(3):77. doi: 10.1007/s12031-024-02244-0.

Abstract

Recent studies on the regulatory networks implicated in Alzheimer's disease (AD) evince long non-coding RNAs (lncRNAs) as crucial regulatory players, albeit a poor understanding of the mechanism. Analyzing differential gene expression in the RNA-seq data from the post-mortem AD brain hippocampus, we categorized a list of AD-dysregulated lncRNA transcripts into functionally similar communities based on their k-mer profiles. Using machine-learning-based algorithms, their subcellular localizations were mapped. We further explored the functional relevance of each community through AD-dysregulated miRNA, RNA-binding protein (RBP) interactors, and pathway enrichment analyses. Further investigation of the miRNA-lncRNA and RBP-lncRNA networks from each community revealed the top RBPs, miRNAs, and lncRNAs for each cluster. The experimental validation community yielded ELAVL4 and miR-16-5p as the predominant RBP and miRNA, respectively. Five lncRNAs emerged as the top-ranking candidates from the RBP/miRNA-lncRNA networks. Further analyses of these networks revealed the presence of multiple regulatory triads where the RBP-lncRNA interactions could be augmented by the enhanced miRNA-lncRNA interactions. Our results advance the understanding of the mechanism of lncRNA-mediated AD regulation through their interacting partners and demonstrate how these functionally segregated but overlapping regulatory networks can modulate the disease holistically.

摘要

最近对涉及阿尔茨海默病 (AD) 的调控网络的研究表明,长非编码 RNA (lncRNA) 是至关重要的调控因子,尽管对其机制的了解仍很有限。我们对 AD 脑海马体死后 RNA-seq 数据中的差异基因表达进行了分析,根据它们的 k-mer 图谱将一组 AD 失调的 lncRNA 转录本分类为具有相似功能的社区。然后,我们使用基于机器学习的算法对其亚细胞定位进行了映射。我们进一步通过 AD 失调的 miRNA、RNA 结合蛋白 (RBP) 相互作用物和通路富集分析来探索每个社区的功能相关性。进一步研究每个社区的 miRNA-lncRNA 和 RBP-lncRNA 网络,揭示了每个簇的顶级 RBP、miRNA 和 lncRNA。实验验证社区产生了 ELAVL4 和 miR-16-5p 作为主要的 RBP 和 miRNA。从 RBP/miRNA-lncRNA 网络中出现了五个 lncRNA 作为顶级候选物。对这些网络的进一步分析表明存在多个调节三联体,其中 RBP-lncRNA 相互作用可以通过增强的 miRNA-lncRNA 相互作用来增强。我们的研究结果通过其相互作用伙伴推进了对 lncRNA 介导的 AD 调控机制的理解,并展示了这些功能上分离但重叠的调控网络如何全面调节疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8869/11324768/cc734a552199/12031_2024_2244_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验