Suppr超能文献

利用多模态图变换器揭示大脑的连续动态组织

Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer.

作者信息

Zhao Chongyue, Zhan Liang, Thompson Paul M, Huang Heng

机构信息

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

Imaging Genetics Center, University of Southern California, Los Angeles, CA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2022 Sep;13431:346-355. doi: 10.1007/978-3-031-16431-6_33. Epub 2022 Sep 15.

Abstract

Brain large-scale dynamics is constrained by the heterogeneity of intrinsic anatomical substrate. Little is known how the spatio-temporal dynamics adapt for the heterogeneous structural connectivity (SC). Modern neuroimaging modalities make it possible to study the intrinsic brain activity at the scale of seconds to minutes. Diffusion magnetic resonance imaging (dMRI) and functional MRI reveals the large-scale SC across different brain regions. Electrophysiological methods (i.e. MEG/EEG) provide direct measures of neural activity and exhibits complex neurobiological temporal dynamics which could not be solved by fMRI. However, most of existing multimodal analytical methods collapse the brain measurements either in space or time domain and fail to capture the spatio-temporal circuit dynamics. In this paper, we propose a novel spatio-temporal graph Transformer model to integrate the structural and functional connectivity in both spatial and temporal domain. The proposed method learns the heterogeneous node and graph representation via contrastive learning and multi-head attention based graph Transformer using multimodal brain data (i.e. fMRI, MRI, MEG and behavior performance). The proposed contrastive graph Transformer representation model incorporates the heterogeneity map constrained by T1-to-T2-weighted (T1w/T2w) to improve the model fit to structure-function interactions. The experimental results with multimodal resting state brain measurements demonstrate the proposed method could highlight the local properties of large-scale brain spatio-temporal dynamics and capture the dependence strength between functional connectivity and behaviors. In summary, the proposed method enables the complex brain dynamics explanation for different modal variants.

摘要

大脑的大规模动态受到内在解剖学基质异质性的限制。目前对于时空动态如何适应异质结构连接性(SC)知之甚少。现代神经成像技术使得在秒到分钟的时间尺度上研究大脑内在活动成为可能。扩散磁共振成像(dMRI)和功能磁共振成像揭示了不同脑区之间的大规模SC。电生理方法(即MEG/EEG)提供了神经活动的直接测量,并展现出复杂的神经生物学时间动态,这是功能磁共振成像无法解决的。然而,现有的大多数多模态分析方法在空间或时间域中都会压缩大脑测量数据,无法捕捉时空回路动态。在本文中,我们提出了一种新颖的时空图Transformer模型,以在空间和时间域中整合结构和功能连接性。所提出的方法通过对比学习和基于多头注意力的图Transformer,使用多模态大脑数据(即功能磁共振成像、磁共振成像、脑磁图和行为表现)来学习异质节点和图表示。所提出的对比图Transformer表示模型纳入了受T1加权到T2加权(T1w/T2w)约束的异质性图谱,以提高模型对结构 - 功能相互作用的拟合度。多模态静息态大脑测量的实验结果表明,所提出的方法可以突出大规模脑时空动态的局部特性,并捕捉功能连接性与行为之间的依赖强度。总之,所提出的方法能够对不同模态变体进行复杂的大脑动态解释。

相似文献

1
Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer.利用多模态图变换器揭示大脑的连续动态组织
Med Image Comput Comput Assist Interv. 2022 Sep;13431:346-355. doi: 10.1007/978-3-031-16431-6_33. Epub 2022 Sep 15.
2
Explainable Contrastive Multiview Graph Representation of Brain, Mind, and Behavior.大脑、心智与行为的可解释对比多视图图表示
Med Image Comput Comput Assist Interv. 2022 Sep;13431:356-365. doi: 10.1007/978-3-031-16431-6_34. Epub 2022 Sep 15.

引用本文的文献

1
A comprehensive survey of complex brain network representation.复杂脑网络表征的全面综述。
Meta Radiol. 2023 Nov;1(3). doi: 10.1016/j.metrad.2023.100046. Epub 2023 Dec 16.
3
Current and future directions in network biology.网络生物学的当前与未来发展方向。
Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.

本文引用的文献

2
Gaussian process linking functions for mind, brain, and behavior.高斯过程关联函数在心智、大脑和行为中的应用。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29398-29406. doi: 10.1073/pnas.1912342117.
5
Autoreject: Automated artifact rejection for MEG and EEG data.自动拒绝:用于脑磁图和脑电图数据的自动伪迹拒绝。
Neuroimage. 2017 Oct 1;159:417-429. doi: 10.1016/j.neuroimage.2017.06.030. Epub 2017 Jun 20.
6
Network neuroscience.网络神经科学
Nat Neurosci. 2017 Feb 23;20(3):353-364. doi: 10.1038/nn.4502.
8
A multi-modal parcellation of human cerebral cortex.人类大脑皮层的多模态分区
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
10
Altered global brain signal in schizophrenia.精神分裂症患者大脑整体信号改变。
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7438-43. doi: 10.1073/pnas.1405289111. Epub 2014 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验