Department of Pathology, Northwestern University, Chicago, IL, USA.
Egyptian Ministry of Health, Cairo, Egypt.
Bioinformatics. 2022 Jan 3;38(2):513-519. doi: 10.1093/bioinformatics/btab670.
Nucleus detection, segmentation and classification are fundamental to high-resolution mapping of the tumor microenvironment using whole-slide histopathology images. The growing interest in leveraging the power of deep learning to achieve state-of-the-art performance often comes at the cost of explainability, yet there is general consensus that explainability is critical for trustworthiness and widespread clinical adoption. Unfortunately, current explainability paradigms that rely on pixel saliency heatmaps or superpixel importance scores are not well-suited for nucleus classification. Techniques like Grad-CAM or LIME provide explanations that are indirect, qualitative and/or nonintuitive to pathologists.
In this article, we present techniques to enable scalable nuclear detection, segmentation and explainable classification. First, we show how modifications to the widely used Mask R-CNN architecture, including decoupling the detection and classification tasks, improves accuracy and enables learning from hybrid annotation datasets like NuCLS, which contain mixtures of bounding boxes and segmentation boundaries. Second, we introduce an explainability method called Decision Tree Approximation of Learned Embeddings (DTALE), which provides explanations for classification model behavior globally, as well as for individual nuclear predictions. DTALE explanations are simple, quantitative, and can flexibly use any measurable morphological features that make sense to practicing pathologists, without sacrificing model accuracy. Together, these techniques present a step toward realizing the promise of computational pathology in computer-aided diagnosis and discovery of morphologic biomarkers.
Relevant code can be found at github.com/CancerDataScience/NuCLS.
Supplementary data are available at Bioinformatics online.
核检测、分割和分类是使用全切片组织病理学图像对肿瘤微环境进行高分辨率绘图的基础。利用深度学习的强大功能来实现最新水平的性能的兴趣日益浓厚,但人们普遍认为可解释性对于可信度和广泛的临床应用至关重要。不幸的是,目前依赖于像素显著热图或超像素重要性得分的可解释性范式并不适合核分类。Grad-CAM 或 LIME 等技术提供的解释是间接的、定性的和/或对病理学家来说非直观的。
在本文中,我们提出了可实现可扩展核检测、分割和可解释分类的技术。首先,我们展示了如何修改广泛使用的 Mask R-CNN 架构,包括解耦检测和分类任务,这提高了准确性,并使学习能够从像 NuCLS 这样的混合注释数据集受益,其中包含边界框和分割边界的混合物。其次,我们引入了一种称为学习嵌入的决策树逼近(DTALE)的可解释性方法,它提供了分类模型行为的全局解释,以及对单个核预测的解释。DTALE 解释简单、定量,并且可以灵活地使用任何对有经验的病理学家有意义的可衡量形态特征,而不会牺牲模型准确性。这些技术共同为实现计算病理学在计算机辅助诊断和形态生物标志物发现中的承诺迈出了一步。
相关代码可在 github.com/CancerDataScience/NuCLS 找到。
补充数据可在生物信息学在线获得。