Al Mudawi Naif, Ansar Hira, Alazeb Abdulwahab, Aljuaid Hanan, AlQahtani Yahay, Algarni Asaad, Jalal Ahmad, Liu Hui
Department of Computer Science, College of Computer Science and Information System, Najran University, Najran, Saudi Arabia.
Department of Computer Science, Air University, Islamabad, Pakistan.
Front Bioeng Biotechnol. 2024 Jul 31;12:1401803. doi: 10.3389/fbioe.2024.1401803. eCollection 2024.
Hand gestures are an effective communication tool that may convey a wealth of information in a variety of sectors, including medical and education. E-learning has grown significantly in the last several years and is now an essential resource for many businesses. Still, there has not been much research conducted on the use of hand gestures in e-learning. Similar to this, gestures are frequently used by medical professionals to help with diagnosis and treatment.
We aim to improve the way instructors, students, and medical professionals receive information by introducing a dynamic method for hand gesture monitoring and recognition. Six modules make up our approach: video-to-frame conversion, preprocessing for quality enhancement, hand skeleton mapping with single shot multibox detector (SSMD) tracking, hand detection using background modeling and convolutional neural network (CNN) bounding box technique, feature extraction using point-based and full-hand coverage techniques, and optimization using a population-based incremental learning algorithm. Next, a 1D CNN classifier is used to identify hand motions.
After a lot of trial and error, we were able to obtain a hand tracking accuracy of 83.71% and 85.71% over the Indian Sign Language and WLASL datasets, respectively. Our findings show how well our method works to recognize hand motions.
Teachers, students, and medical professionals can all efficiently transmit and comprehend information by utilizing our suggested system. The obtained accuracy rates highlight how our method might improve communication and make information exchange easier in various domains.
手势是一种有效的沟通工具,在包括医学和教育在内的各个领域都可以传达丰富的信息。在过去几年中,电子学习有了显著增长,现在是许多企业的重要资源。然而,关于手势在电子学习中的应用,尚未进行太多研究。与此类似,医学专业人员经常使用手势来辅助诊断和治疗。
我们旨在通过引入一种动态的手势监测和识别方法,来改进教师、学生和医学专业人员接收信息的方式。我们的方法由六个模块组成:视频到帧的转换、用于质量增强的预处理、使用单阶段多框检测器(SSMD)跟踪的手部骨骼映射、使用背景建模和卷积神经网络(CNN)边界框技术的手部检测、使用基于点和全手覆盖技术的特征提取,以及使用基于群体的增量学习算法的优化。接下来,使用一维CNN分类器来识别手部动作。
经过大量的反复试验,我们在印度手语和WLASL数据集上分别获得了83.71%和85.71%的手部跟踪准确率。我们的研究结果表明了我们的方法在识别手部动作方面的有效性。
教师、学生和医学专业人员都可以通过使用我们建议的系统有效地传输和理解信息。所获得的准确率突出了我们的方法如何在各个领域改善沟通并使信息交流更加容易。