Alenezi Ahmad, McKiddie Fergus, Nath Mintu, Mayya Ali, Welch Andy
Department of Radiologic Sciences, Kuwait University, Jabriya, Kuwait.
Nuclear Medicine, Unaffiliated, Aberdeen, Aberdeenshire, United Kingdom.
PeerJ Comput Sci. 2024 Aug 2;12:e2230. doi: 10.7717/peerj-cs.2230. eCollection 2024.
Patients with breast cancer undergoing biological therapy and/or chemotherapy perform multiple radionuclide angiography (RNA) or multigated acquisition (MUGA) scans to assess cardiotoxicity. The association between RNA imaging parameters and left ventricular (LV) ejection fraction (LVEF) remains unclear.
This study aimed to extract and evaluate the association of several novel imaging biomarkers to detect changes in LVEF in patients with breast cancer undergoing chemotherapy.
We developed and optimized a novel set of MATLAB routines called the "RNA Toolbox" to extract parameters from RNA images. The code was optimized using various statistical tests (., ANOVA, Bland-Altman, and intraclass correlation tests). We quantitatively analyzed the images to determine the association between these parameters using regression models and receiver operating characteristic (ROC) curves.
The code was reproducible and showed good agreement with validated clinical software for the parameters extracted from both packages. The regression model and ROC results were statistically significant in predicting LVEF (R = 0.40, < 0.001) (AUC = 0.78). Some time-based, shape-based, and count-based parameters were significantly associated with post-chemotherapy LVEF (β = 0.09, < 0.001), LVEF of phase image (β = 4, = 0.030), approximate entropy (ApEn) (β = 11.6, = 0.001), ApEn (diastolic and systolic) (β = 39, = 0.002) and LV systole size (β = 0.03, = 0.010).
Despite the limited sample size, we observed evidence of associations between several parameters and LVEF. We believe that these parameters will be more beneficial than the current methods for patients undergoing cardiotoxic chemotherapy. Moreover, this approach can aid physicians in evaluating subclinical cardiac changes during chemotherapy, and in understanding the potential benefits of cardioprotective drugs.
接受生物治疗和/或化疗的乳腺癌患者需进行多次放射性核素血管造影(RNA)或多门控采集(MUGA)扫描以评估心脏毒性。RNA成像参数与左心室(LV)射血分数(LVEF)之间的关联尚不清楚。
本研究旨在提取并评估几种新型成像生物标志物与接受化疗的乳腺癌患者LVEF变化之间的关联。
我们开发并优化了一套名为“RNA工具箱”的新型MATLAB程序,以从RNA图像中提取参数。使用各种统计测试(如方差分析、布兰德-奥特曼分析和组内相关测试)对代码进行优化。我们使用回归模型和受试者操作特征(ROC)曲线对图像进行定量分析,以确定这些参数之间的关联。
该代码具有可重复性,并且与从两个软件包中提取的参数的经过验证的临床软件显示出良好的一致性。回归模型和ROC结果在预测LVEF方面具有统计学意义(R = 0.40,P < 0.001)(AUC = 0.78)。一些基于时间、形状和计数的参数与化疗后LVEF(β = 0.09,P < 0.001)、相位图像的LVEF(β = 4,P = 0.030)、近似熵(ApEn)(β = 11.6,P = 0.001)、ApEn(舒张期和收缩期)(β = 39,P = 0.002)和左心室收缩期大小(β = 0.03,P = 0.010)显著相关。
尽管样本量有限,但我们观察到了几个参数与LVEF之间存在关联的证据。我们认为,对于接受心脏毒性化疗的患者,这些参数将比当前方法更有益。此外, 这种方法可以帮助医生评估化疗期间的亚临床心脏变化,并了解心脏保护药物的潜在益处。