Computer Vision Group, Institute of Computer Science III, University of Bonn, Endenicher Allee 19a, 53115 Bonn, Germany.
Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
Sensors (Basel). 2020 Oct 18;20(20):5893. doi: 10.3390/s20205893.
In order to enable timely actions to prevent major losses of crops caused by lack of nutrients and, hence, increase the potential yield throughout the growing season while at the same time prevent excess fertilization with detrimental environmental consequences, early, non-invasive, and on-site detection of nutrient deficiency is required. Current non-invasive methods for assessing the nutrient status of crops deal in most cases with nitrogen (N) deficiency only and optical sensors to diagnose N deficiency, such as chlorophyll meters or canopy reflectance sensors, do not monitor N, but instead measure changes in leaf spectral properties that may or may not be caused by N deficiency. In this work, we study how well nutrient deficiency symptoms can be recognized in RGB images of sugar beets. To this end, we collected the Deep Nutrient Deficiency for Sugar Beet (DND-SB) dataset, which contains 5648 images of sugar beets growing on a long-term fertilizer experiment with nutrient deficiency plots comprising N, phosphorous (P), and potassium (K) deficiency, as well as the omission of liming (Ca), full fertilization, and no fertilization at all. We use the dataset to analyse the performance of five convolutional neural networks for recognizing nutrient deficiency symptoms and discuss their limitations.
为了能够及时采取行动,防止因缺乏营养而导致作物大量减产,并在整个生长季节提高产量潜力,同时防止因过度施肥而对环境造成不利影响,需要进行早期、非侵入性和现场的营养缺乏检测。目前用于评估作物营养状况的非侵入性方法在大多数情况下仅涉及氮(N)缺乏,并且用于诊断 N 缺乏的光学传感器(如叶绿素计或冠层反射传感器)并不监测 N,而是测量叶片光谱特性的变化,这些变化可能是由 N 缺乏引起的,也可能不是由 N 缺乏引起的。在这项工作中,我们研究了如何在甜菜的 RGB 图像中识别营养缺乏症状。为此,我们收集了 Deep Nutrient Deficiency for Sugar Beet (DND-SB) 数据集,其中包含 5648 张在长期施肥试验中生长的甜菜图像,这些试验包括缺氮、缺磷(P)和缺钾(K)的地块,以及省略石灰(Ca)、充分施肥和完全不施肥的地块。我们使用该数据集分析了五个卷积神经网络识别营养缺乏症状的性能,并讨论了它们的局限性。