Suppr超能文献

开发用于上肢康复的基于平板电脑的脑机接口和机器人原型。

Developing a tablet-based brain-computer interface and robotic prototype for upper limb rehabilitation.

作者信息

Lakshminarayanan Kishor, Ramu Vadivelan, Shah Rakshit, Haque Sunny Md Samiul, Madathil Deepa, Brahmi Brahim, Wang Inga, Fareh Raouf, Rahman Mohammad Habibur

机构信息

Department of Sensors and Biomedical Tech, School of Electronics Engineering, Vellore Institute of Technology University, Vellore, Tamil Nadu, India.

Department of Orthopaedic Surgery, University of Arizona, Tucson, AZ, United States of America.

出版信息

PeerJ Comput Sci. 2024 Jul 23;10:e2174. doi: 10.7717/peerj-cs.2174. eCollection 2024.

Abstract

BACKGROUND

The current study explores the integration of a motor imagery (MI)-based BCI system with robotic rehabilitation designed for upper limb function recovery in stroke patients.

METHODS

We developed a tablet deployable BCI control of the virtual iTbot for ease of use. Twelve right-handed healthy adults participated in this study, which involved a novel BCI training approach incorporating tactile vibration stimulation during MI tasks. The experiment utilized EEG signals captured a gel-free cap, processed through various stages including signal verification, training, and testing. The training involved MI tasks with concurrent vibrotactile stimulation, utilizing common spatial pattern (CSP) training and linear discriminant analysis (LDA) for signal classification. The testing stage introduced a real-time feedback system and a virtual game environment where participants controlled a virtual iTbot robot.

RESULTS

Results showed varying accuracies in motor intention detection across participants, with an average true positive rate of 63.33% in classifying MI signals.

DISCUSSION

The study highlights the potential of MI-based BCI in robotic rehabilitation, particularly in terms of engagement and personalization. The findings underscore the feasibility of BCI technology in rehabilitation and its potential use for stroke survivors with upper limb dysfunctions.

摘要

背景

本研究探索了基于运动想象(MI)的脑机接口(BCI)系统与为中风患者上肢功能恢复设计的机器人康复的整合。

方法

我们开发了一种可在平板电脑上部署的虚拟iTbot的BCI控制,以方便使用。12名右利手健康成年人参与了本研究,该研究涉及一种新颖的BCI训练方法,即在运动想象任务期间结合触觉振动刺激。实验利用通过无凝胶帽采集的脑电图信号,经过包括信号验证、训练和测试等各个阶段进行处理。训练包括带有同步振动触觉刺激的运动想象任务,利用共同空间模式(CSP)训练和线性判别分析(LDA)进行信号分类。测试阶段引入了实时反馈系统和虚拟游戏环境,参与者在其中控制虚拟iTbot机器人。

结果

结果显示,参与者在运动意图检测方面的准确率各不相同,在对运动想象信号进行分类时,平均真阳性率为63.33%。

讨论

该研究突出了基于运动想象的脑机接口在机器人康复中的潜力,特别是在参与度和个性化方面。研究结果强调了脑机接口技术在康复中的可行性及其对上肢功能障碍中风幸存者的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa5/11323104/56249aa30e96/peerj-cs-10-2174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验