Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA.
Department of Physics, Indiana University Indianapolis, Indianapolis, Indiana 46202, USA.
J Chem Phys. 2024 Aug 21;161(7). doi: 10.1063/5.0222446.
The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optimization of kinetic properties governing conformational changes. In this work, we introduce a mean-field theory to characterize the kinetic behavior of a dynamic DNA origami hinge where each arm bears complementary single-stranded DNA overhangs of different lengths, which can latch the hinge at a closed conformation. This device is currently being investigated for multiple applications, being of particular interest the development of DNA-based rapid diagnostic tests for coronavirus. Drawing from classical statistical mechanics theories, we derive analytical expressions for the mean binding time of these overhangs within a constant hinge. This analysis is then extended to flexible hinges, where the angle diffuses within a predetermined energy landscape. We validate our model by comparing it with experimental measurements of the closing rates of DNA nanocalipers with different energy landscapes and overhang lengths, demonstrating excellent agreement and suggesting fast angular relaxation relative to binding. These findings offer insights that can guide the optimization of devices for specific state lifetimes. Moreover, the framework introduced here lays the groundwork for further advancements in modeling the kinetics of dynamic DNA nanostructures.
动态 DNA 纳米结构的演变推动了 DNA 纳米技术成为一个强大而多功能的领域,在纳米级通信、药物输送和分子计算等方面提供了开创性的应用。然而,这项技术的全部潜力还需要通过优化控制构象变化的动力学特性来进一步提高。在这项工作中,我们引入了一种平均场理论来描述动态 DNA 折纸铰链的动力学行为,其中每个臂都带有不同长度的互补单链 DNA 突出端,可以将铰链锁定在关闭构象。该设备目前正在研究多种应用,特别是用于开发基于 DNA 的冠状病毒快速诊断测试。我们从经典统计力学理论中推导出这些突出端在恒定铰链内的平均结合时间的解析表达式。然后将该分析扩展到柔性铰链,其中角度在预定的能量景观内扩散。我们通过将其与具有不同能量景观和突出端长度的 DNA 纳米卡尺的关闭速率的实验测量进行比较来验证我们的模型,证明了非常好的一致性,并表明与结合相比,角度的松弛速度较快。这些发现为优化特定状态寿命的器件提供了指导。此外,这里引入的框架为进一步推进动态 DNA 纳米结构动力学的建模奠定了基础。