Department of Mechanical and Aerospace Engineering, Seoul National University, 301-dong 116-ho, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
Institute of Advanced Machines and Design, Seoul National University, 313-dong 320-ho, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
Nat Commun. 2017 Dec 12;8(1):2067. doi: 10.1038/s41467-017-02127-6.
Scaffolded DNA origami enables the bottom-up fabrication of diverse DNA nanostructures by designing hundreds of staple strands, comprised of complementary sequences to the specific binding locations of a scaffold strand. Despite its exceptionally high design flexibility, poor reusability of staples has been one of the major hurdles to fabricate assorted DNA constructs in an effective way. Here we provide a rational module-based design approach to create distinct bent shapes with controllable geometries and flexibilities from a single, reference set of staples. By revising the staple connectivity within the desired module, we can control the location, stiffness, and included angle of hinges precisely, enabling the construction of dozens of single- or multiple-hinge structures with the replacement of staple strands up to 12.8% only. Our design approach, combined with computational shape prediction and analysis, can provide a versatile and cost-effective procedure in the design of DNA origami shapes with stiffness-tunable units.
支架 DNA 折纸术通过设计数百个订书钉来实现各种 DNA 纳米结构的自下而上制造,这些订书钉由与支架链特定结合位置互补的序列组成。尽管它具有极高的设计灵活性,但订书钉的低复用性一直是有效制造各种 DNA 结构的主要障碍之一。在这里,我们提供了一种基于合理模块的设计方法,从单个参考订书钉集合中创建具有可控几何形状和柔韧性的不同弯曲形状。通过修改所需模块内的订书钉连接,我们可以精确控制铰链的位置、刚度和包含角度,仅通过替换订书钉就可以构建数十个单铰链或多铰链结构,订书钉替换率高达 12.8%。我们的设计方法结合计算形状预测和分析,可以为具有可调刚度单元的 DNA 折纸形状设计提供一种通用且经济高效的方法。