Suppr超能文献

动态 DNA 折纸器件:从链置换反应到对外界刺激响应的系统。

Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems.

机构信息

Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.

Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.

出版信息

Int J Mol Sci. 2018 Jul 20;19(7):2114. doi: 10.3390/ijms19072114.

Abstract

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled translational or rotational movement when triggered by predefined DNA sequences, various molecular interactions, and/or external stimuli such as light, pH, temperature, and electromagnetic fields. The rapid evolution of such dynamic DNA origami tools will undoubtedly have a significant impact on molecular-scale precision measurements, targeted drug delivery and diagnostics; however, they can also play a role in the development of optical/plasmonic sensors, nanophotonic devices, and nanorobotics for numerous different tasks.

摘要

DNA 纳米技术为各种纳米结构提供了极好的基础,这些结构可用于各种生物应用和材料研究。在所有现有的 DNA 组装技术中,DNA 折纸术被证明是创建自定义纳米形状最强大的方法。自 2006 年发明以来,使用 DNA 进行自下而上的构建有了很大的发展,因此,越来越多的复杂基于 DNA 的系统变得可行。到目前为止,绝大多数展示的 DNA 折纸框架本质上是静态的;然而,也存在动态 DNA 折纸设备,它们正越来越受到关注。在这篇综述中,我们讨论了当受到预定义的 DNA 序列、各种分子相互作用和/或外部刺激(如光、pH 值、温度和电磁场)触发时,表现出受控平移或旋转运动的 DNA 折纸纳米结构。这种动态 DNA 折纸工具的快速发展无疑将对分子级精度测量、靶向药物输送和诊断产生重大影响;然而,它们也可以在光学/等离子体传感器、纳米光子器件和用于各种任务的纳米机器人的发展中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb79/6073283/90c3cbd2d57d/ijms-19-02114-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验